These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34241096)

  • 1. Influence of seabed on very low frequency sound recorded during passage of merchant ships on the New England shelf.
    Knobles DP; Wilson PS; Neilsen TB; Hodgkiss WS
    J Acoust Soc Am; 2021 May; 149(5):3294. PubMed ID: 34241096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximum entropy inference of seabed properties using waveguide invariant features from surface ships.
    Knobles DP; Neilsen TB; Wilson PS; Hodgkiss WS; Bonnel J; Lin YT
    J Acoust Soc Am; 2022 May; 151(5):2885. PubMed ID: 35649902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inference of source signatures of merchant ships in shallow ocean environmentsa).
    Knobles DP; Neilsen TB; Hodgkiss WS; Goff JA
    J Acoust Soc Am; 2024 May; 155(5):3144-3155. PubMed ID: 38727548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic resonances within the surficial layer of a muddy seabed.
    Dall'Osto DR; Tang D
    J Acoust Soc Am; 2022 May; 151(5):3473. PubMed ID: 35649909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geoacoustic inversion using low frequency broadband acoustic measurements from L-shaped arrays in the Shallow Water 2006 Experiment.
    Wan L; Badiey M; Knobles DP
    J Acoust Soc Am; 2016 Oct; 140(4):2358. PubMed ID: 27794339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling underwater sound propagation in an arctic shelf region with an inhomogeneous bottom.
    Petnikov VG; Grigorev VA; Lunkov AA; Sidorov DD
    J Acoust Soc Am; 2022 Apr; 151(4):2297. PubMed ID: 35461505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential inversion of modal data for sound attenuation in sediment at the New Jersey Shelf.
    Duan R; Chapman NR; Yang K; Ma Y
    J Acoust Soc Am; 2016 Jan; 139(1):70-84. PubMed ID: 26827006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seabed classification from merchant ship-radiated noise using a physics-based ensemble of deep learning algorithms.
    Escobar-Amado CD; Neilsen TB; Castro-Correa JA; Van Komen DF; Badiey M; Knobles DP; Hodgkiss WS
    J Acoust Soc Am; 2021 Aug; 150(2):1434. PubMed ID: 34470272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feature-based maximum entropy for geophysical properties of the seabeda).
    Knobles DP; Hodgkiss W; Chaytor J; Neilsen T; Lin YT
    J Acoust Soc Am; 2024 Jun; 155(6):3559-3567. PubMed ID: 38829153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Passive geoacoustic inversion in the Mid-Atlantic Bight in the presence of strong water column variability.
    Tan TW; Godin OA; Katsnelson BG; Yarina M
    J Acoust Soc Am; 2020 Jun; 147(6):EL453. PubMed ID: 32611134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Range dependent sediment sound speed profile measurements using the image source method.
    Pinson S; Guillon L; Holland CW
    J Acoust Soc Am; 2013 Jul; 134(1):156-65. PubMed ID: 23862794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geoacoustic inversion on the New England Mud Patch using warping and dispersion curves of high-order modes.
    Bonnel J; Lin YT; Eleftherakis D; Goff JA; Dosso S; Chapman R; Miller JH; Potty GR
    J Acoust Soc Am; 2018 May; 143(5):EL405. PubMed ID: 29857724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential and kinetic energy of underwater noise measured below a passing ship and response to sub-bottom layering.
    Dahl PH; Dall'Osto DR
    J Acoust Soc Am; 2022 Dec; 152(6):3648. PubMed ID: 36586834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seabed acoustics of a sand ridge on the New Jersey continental shelf.
    Knobles DP; Wilson PS; Goff JA; Cho SE
    J Acoust Soc Am; 2008 Sep; 124(3):EL151-6. PubMed ID: 19045558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic interferometry for geoacoustic characterization in a soft-layered sediment environment.
    Ren QY; Hermand JP
    J Acoust Soc Am; 2013 Jan; 133(1):82-93. PubMed ID: 23297885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of sound propagation in shallow water over an elastic seabed with a thin cap-rock layer.
    Duncan AJ; Gavrilov AN; McCauley RD; Parnum IM; Collis JM
    J Acoust Soc Am; 2013 Jul; 134(1):207-15. PubMed ID: 23862798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Horizontal refraction of propagating sound due to seafloor scours over a range-dependent layered bottom on the New Jersey shelf.
    Ballard MS; Lin YT; Lynch JF
    J Acoust Soc Am; 2012 Apr; 131(4):2587-98. PubMed ID: 22501040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of seabed properties and range from vector acoustic observations of underwater ship noise.
    Dahl PH; Dall'Osto DR
    J Acoust Soc Am; 2020 Apr; 147(4):EL345. PubMed ID: 32359320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maximum entropy inference of seabed attenuation parameters using ship radiated broadband noise.
    Knobles DP
    J Acoust Soc Am; 2015 Dec; 138(6):3563-75. PubMed ID: 26723313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid geoacoustic inversion of broadband Mediterranean Sea data.
    Fallat MR; Nielsen PL; Dosso SE
    J Acoust Soc Am; 2000 Apr; 107(4):1967-77. PubMed ID: 10790023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.