These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34241115)

  • 1. On training targets for deep learning approaches to clean speech magnitude spectrum estimation.
    Nicolson A; Paliwal KK
    J Acoust Soc Am; 2021 May; 149(5):3273. PubMed ID: 34241115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of a priori signal-to-noise ratio using neurograms for speech enhancement.
    Jassim WA; Harte N
    J Acoust Soc Am; 2020 Jun; 147(6):3830. PubMed ID: 32611151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Matrix sentence intelligibility prediction using an automatic speech recognition system.
    Schädler MR; Warzybok A; Hochmuth S; Kollmeier B
    Int J Audiol; 2015; 54 Suppl 2():100-7. PubMed ID: 26383042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Learning-Based Noise Reduction Approach to Improve Speech Intelligibility for Cochlear Implant Recipients.
    Lai YH; Tsao Y; Lu X; Chen F; Su YT; Chen KC; Chen YH; Chen LC; Po-Hung Li L; Lee CH
    Ear Hear; 2018; 39(4):795-809. PubMed ID: 29360687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimators of The Magnitude-Squared Spectrum and Methods for Incorporating SNR Uncertainty.
    Lu Y; Loizou PC
    IEEE Trans Audio Speech Lang Process; 2011 Jul; 19(5):1123-1137. PubMed ID: 21886543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Causal speech enhancement using dynamical-weighted loss and attention encoder-decoder recurrent neural network.
    Peracha FK; Khattak MI; Salem N; Saleem N
    PLoS One; 2023; 18(5):e0285629. PubMed ID: 37167227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards real-world objective speech quality and intelligibility assessment using speech-enhancement residuals and convolutional long short-term memory networks.
    Dong X; Williamson DS
    J Acoust Soc Am; 2020 Nov; 148(5):3348. PubMed ID: 33261399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral distortion level resulting in a just-noticeable difference between an a priori signal-to-noise ratio estimate and its instantaneous case.
    Nicolson A; Paliwal KK
    J Acoust Soc Am; 2020 Oct; 148(4):1879. PubMed ID: 33138496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep neural network-based generalized sidelobe canceller for dual-channel far-field speech recognition.
    Li G; Liang S; Nie S; Liu W; Yang Z
    Neural Netw; 2021 Sep; 141():225-237. PubMed ID: 33930564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale training to increase speech intelligibility for hearing-impaired listeners in novel noises.
    Chen J; Wang Y; Yoho SE; Wang D; Healy EW
    J Acoust Soc Am; 2016 May; 139(5):2604. PubMed ID: 27250154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Robustness of Deep Neural Network Acoustic Models via Speech Separation and Joint Adaptive Training.
    Narayanan A; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2015 Jan; 23(1):92-101. PubMed ID: 26973851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The benefit of combining a deep neural network architecture with ideal ratio mask estimation in computational speech segregation to improve speech intelligibility.
    Bentsen T; May T; Kressner AA; Dau T
    PLoS One; 2018; 13(5):e0196924. PubMed ID: 29763459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional Language Speech Recognition from Bone-Conducted Speech Signals through Different Deep Learning Architectures.
    Putta VS; Selwin Mich Priyadharson A; Sundramurthy VP
    Comput Intell Neurosci; 2022; 2022():4473952. PubMed ID: 36059405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-ended prediction of listening effort using deep neural networks.
    Huber R; Krüger M; Meyer BT
    Hear Res; 2018 Mar; 359():40-49. PubMed ID: 29373159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-Step Joint Optimization with Auxiliary Loss Function for Noise-Robust Speech Recognition.
    Lee GW; Kim HK
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech.
    Agarwalla S; Sarma KK
    Neural Netw; 2016 Jun; 78():97-111. PubMed ID: 26783204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Domain Adaptation with Augmented Data by Deep Neural Network Based Method Using Re-Recorded Speech for Automatic Speech Recognition in Real Environment.
    Nahar R; Miwa S; Kai A
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Influence of Noise Reduction on Speech Intelligibility, Response Times to Speech, and Perceived Listening Effort in Normal-Hearing Listeners.
    van den Tillaart-Haverkate M; de Ronde-Brons I; Dreschler WA; Houben R
    Trends Hear; 2017; 21():2331216517716844. PubMed ID: 28656807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long short-term memory for speaker generalization in supervised speech separation.
    Chen J; Wang D
    J Acoust Soc Am; 2017 Jun; 141(6):4705. PubMed ID: 28679261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speech intelligibility in reverberation with ideal binary masking: effects of early reflections and signal-to-noise ratio threshold.
    Roman N; Woodruff J
    J Acoust Soc Am; 2013 Mar; 133(3):1707-17. PubMed ID: 23464040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.