These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 34241119)

  • 1. Homogenization of periodic 1-3 piezocomposite using wave propagation: Toward an experimental method.
    Balé A; Rouffaud R; Levassort F; Brenner R; Hladky-Hennion AC
    J Acoust Soc Am; 2021 May; 149(5):3122. PubMed ID: 34241119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A combined genetic algorithm and finite element method for the determination of a practical elasto-electric set for 1-3 piezocomposite phases.
    Rouffaud R; Hladky-Hennion AC; Levassort F
    Ultrasonics; 2017 May; 77():214-223. PubMed ID: 28254566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and theoretical determination of 1-3 piezocomposite electroacoustic tensor.
    Ferin G; Certon D; Felix N; Patat F
    Ultrasonics; 2006 Dec; 44 Suppl 1():e763-72. PubMed ID: 16797658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the bandwidth of piezoelectric composite transducers for air-coupled non-destructive evaluation.
    Banks R; O'Leary RL; Hayward G
    Ultrasonics; 2017 Mar; 75():132-144. PubMed ID: 27951502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and finite element modelling studies on single-layer and multi-layer 1-3 piezocomposite transducers.
    Ramesh R; Prasad CD; Kumar TK; Gavane LA; Vishnubhatla RM
    Ultrasonics; 2006 Nov; 44(4):341-9. PubMed ID: 16890265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective property evaluation and analysis of three-dimensional periodic lattices and composites through Bloch-wave homogenization.
    Patil GU; Matlack KH
    J Acoust Soc Am; 2019 Mar; 145(3):1259. PubMed ID: 31067925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crosstalk reduction in a piezoelectric phononic plate induced by electrical boundary conditions: Application to multi-element transducers.
    Fei L; Haumesser L; Tran-Huu-Hué LP
    Ultrasonics; 2022 Feb; 119():106638. PubMed ID: 34800815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational and experimental investigation of the fields generated by a 1-3 piezocomposite transducer.
    Schechter RS; Simmonds KE; Mignogna RB
    Ultrasonics; 2001 Apr; 39(3):163-72. PubMed ID: 11349997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of ultrasonic wave propagation in integrated piezoelectric structures under residual stress.
    Lematre M; Feuillard G; Delaunay T; Lethiecq M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Apr; 53(4):685-96. PubMed ID: 16615572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective electroelastic moduli of 3-3(0-3) piezocomposites.
    Levassort F; Lethiecq M; Desmare R; Hue TH
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(4):1028-34. PubMed ID: 18238508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the relationship between the inter-rod coupling and the efficiency of piezocomposite high-intensity focused ultrasound transducers.
    Chen GS; Pan CC; Lin YL; Cheng JS
    Ultrasonics; 2014 Mar; 54(3):789-94. PubMed ID: 24269167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of high frequency piezocomposite with hexagonal pillars via cold ablation process.
    Li Z; Lv J; Zhu X; Cui Y; Jian X
    Ultrasonics; 2021 Jul; 114():106404. PubMed ID: 33714767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional electroacoustic model of transducer array based on 1-3 piezocomposite materials.
    Certon D; Guyonvarch J; Férin G; Patat F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Dec; 53(12):2471-80. PubMed ID: 17186929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micromachined High Frequency 1-3 Piezocomposite Transducer Using Picosecond Laser.
    Xu J; Han Z; Wang N; Li Z; Lv J; Zhu X; Cui Y; Jian X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jun; 68(6):2219-2226. PubMed ID: 33591917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of bare 1-3 piezocomposite array to localized electrical excitation.
    Guyonvarch J; Certon D; Ratsimandresy L; Patat F; Lethiecq M
    J Acoust Soc Am; 2005 Jan; 117(1):200-9. PubMed ID: 15704413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and numerical determination of the wave dispersion characteristics of complex 3D woven composites.
    Thierry V; Mesnil O; Chronopoulos D
    Ultrasonics; 2020 Apr; 103():106068. PubMed ID: 32018092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroacoustic evaluations of 1-3 piezocomposite SonoPanel(TM ) materials.
    Howarth TR; Ting RY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(4):886-94. PubMed ID: 18238622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Study of the Effective Properties of 0-3 and Gyroid Triply Periodic Minimal Surface Cement-Piezocomposites.
    Karmakar S; Kiran R; Vaish R; Chauhan VS; Ahmed SB; Boukhris I; Hwang W; Sung TH; Kumar A
    Glob Chall; 2023 Feb; 7(2):2200122. PubMed ID: 36778779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical homogenization techniques applied to piezoelectric composites.
    Lenglet E; Hladky-Hennion AC; Debus JC
    J Acoust Soc Am; 2003 Feb; 113(2):826-33. PubMed ID: 12597177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A FEM-based method to determine the complex material properties of piezoelectric disks.
    Pérez N; Carbonari RC; Andrade MA; Buiochi F; Adamowski JC
    Ultrasonics; 2014 Aug; 54(6):1631-41. PubMed ID: 24735932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.