These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 34241127)

  • 1. Influence of geometry on acoustic end-corrections of slits in microslit absorbers.
    Aulitto A; Hirschberg A; Lopez Arteaga I
    J Acoust Soc Am; 2021 May; 149(5):3073. PubMed ID: 34241127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of edge geometry on end-correction coefficients in micro perforated plates.
    Temiz MA; Lopez Arteaga I; Efraimsson G; Åbom M; Hirschberg A
    J Acoust Soc Am; 2015 Dec; 138(6):3668-77. PubMed ID: 26723322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic analysis of submerged microscale plates: the effects of acoustic radiation and viscous dissipation.
    Wu Z; Ma X
    Proc Math Phys Eng Sci; 2016 Mar; 472(2187):20150728. PubMed ID: 27118914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. End correction model for the transfer impedance of microperforated panels using viscothermal wave theory.
    Li X
    J Acoust Soc Am; 2017 Mar; 141(3):1426. PubMed ID: 28372065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boundary-Layer Effects on Acoustic Transmission Through Narrow Slit Cavities.
    Ward GP; Lovelock RK; Murray AR; Hibbins AP; Sambles JR; Smith JD
    Phys Rev Lett; 2015 Jul; 115(4):044302. PubMed ID: 26252688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boundary-layer effects on electromagnetic and acoustic extraordinary transmission through narrow slits.
    Brandão R; Holley JR; Schnitzer O
    Proc Math Phys Eng Sci; 2020 Oct; 476(2242):20200444. PubMed ID: 33223943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The diffusion and relaxation of Gaussian chains in narrow rectangular slits.
    Bhattacharyya P; Cherayil BJ
    J Chem Phys; 2013 Jun; 138(24):244904. PubMed ID: 23822271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Including fluid shear viscosity in a structural acoustic finite element model using a scalar fluid representation.
    Cheng L; Li Y; Grosh K
    J Comput Phys; 2013 Aug; 247():248-261. PubMed ID: 23729844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic force on a particle oscillating in a viscous fluid near a wall with dynamic partial-slip boundary condition.
    Felderhof BU
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046303. PubMed ID: 22680570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulations of perforated plate liners: Analysis of the visco-thermal dissipation mechanisms.
    Billard R; Tissot G; Gabard G; Versaevel M
    J Acoust Soc Am; 2021 Jan; 149(1):16. PubMed ID: 33514166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Streamwise-travelling viscous waves in channel flows.
    Ricco P; Hicks PD
    J Eng Math; 2018; 111(1):23-49. PubMed ID: 30996402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical simulation of particulate flows using a hybrid of finite difference and boundary integral methods.
    Bhattacharya A; Kesarkar T
    Phys Rev E; 2016 Oct; 94(4-1):043309. PubMed ID: 27841548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic end corrections for micro-perforated plates.
    Naderyan V; Raspet R; Hickey CJ; Mohammadi M
    J Acoust Soc Am; 2019 Oct; 146(4):EL399. PubMed ID: 31671983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of inhomogeneous temperature fields on acoustic streaming structures in resonators.
    Červenka M; Bednařík M
    J Acoust Soc Am; 2017 Jun; 141(6):4418. PubMed ID: 28618831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic microbubble dynamics with viscous effects.
    Manmi K; Wang Q
    Ultrason Sonochem; 2017 May; 36():427-436. PubMed ID: 28069230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissipation, intermittency, and singularities in incompressible turbulent flows.
    Debue P; Shukla V; Kuzzay D; Faranda D; Saw EW; Daviaud F; Dubrulle B
    Phys Rev E; 2018 May; 97(5-1):053101. PubMed ID: 29906866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theory of pressure acoustics with viscous boundary layers and streaming in curved elastic cavities.
    Bach JS; Bruus H
    J Acoust Soc Am; 2018 Aug; 144(2):766. PubMed ID: 30180663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Swimming of a deformable slab in a viscous incompressible fluid with inertia.
    Felderhof BU
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063014. PubMed ID: 26764811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling electroosmotic and pressure-driven flows in porous microfluidic devices: zeta potential and porosity changes near the channel walls.
    Scales N; Tait RN
    J Chem Phys; 2006 Sep; 125(9):094714. PubMed ID: 16965112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microacoustic analysis including viscosity and thermal conductivity to model the effect of the protective cap on the acoustic response of a MEMS microphone.
    Homentcovschi D; Miles RN; Loeppert PV; Zuckerwar AJ
    Microsyst Technol; 2014 Feb; 20(2):265-272. PubMed ID: 24701031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.