BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 34241255)

  • 1. Deep learning combined with IAST to screen thermodynamically feasible MOFs for adsorption-based separation of multiple binary mixtures.
    Anderson R; Gómez-Gualdrón DA
    J Chem Phys; 2021 Jun; 154(23):234102. PubMed ID: 34241255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Database for CO
    Altintas C; Avci G; Daglar H; Nemati Vesali Azar A; Velioglu S; Erucar I; Keskin S
    ACS Appl Mater Interfaces; 2018 May; 10(20):17257-17268. PubMed ID: 29722965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of an Anion-Pillared MOF Database and the Screening of MOFs Suitable for Xe/Kr Separation.
    Gu C; Yu Z; Liu J; Sholl DS
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11039-11049. PubMed ID: 33646743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of High-Throughput Screening and Assembly to Discover Efficient Metal-Organic Frameworks on Kr/Xe Adsorption Separation.
    Du XM; Xiao ST; Wang X; Sun X; Lin YF; Wang Q; Chen GH
    J Phys Chem B; 2023 Sep; 127(38):8116-8130. PubMed ID: 37725055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption Isotherm Predictions for Multiple Molecules in MOFs Using the Same Deep Learning Model.
    Anderson R; Biong A; Gómez-Gualdrón DA
    J Chem Theory Comput; 2020 Feb; 16(2):1271-1283. PubMed ID: 31922755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Programmed Polarizability Engineering in a Cyclen-Based Cubic Zr(IV) Metal-Organic Framework to Boost Xe/Kr Separation.
    Gong W; Xie Y; Wang X; Kirlikovali KO; Idrees KB; Sha F; Xie H; Liu Y; Chen B; Cui Y; Farha OK
    J Am Chem Soc; 2023 Feb; 145(4):2679-2689. PubMed ID: 36652593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Halogen-Decorated Metal-Organic Frameworks for Efficient and Selective CO
    Karmakar A; Santos AACD; Pagliaricci N; Pires J; Batista M; Alegria ECBA; Martin-Calvo A; Gutiérrez-Sevillano JJ; Calero S; Guedes da Silva MFC; Pettinari R; Pombeiro AJL
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38605636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale Computational Screening of Metal-Organic Frameworks for Kr/Xe Adsorption Separation: A Structure-Property Relationship-Based Screening Strategy.
    Lin WQ; Xiong XL; Liang H; Chen GH
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):17998-18009. PubMed ID: 33821608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. XGBoost: An Optimal Machine Learning Model with Just Structural Features to Discover MOF Adsorbents of Xe/Kr.
    Liang H; Jiang K; Yan TA; Chen GH
    ACS Omega; 2021 Apr; 6(13):9066-9076. PubMed ID: 33842776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ideal Adsorbed Solution Theory (IAST) of Carbon Dioxide and Methane Adsorption Using Magnesium Gallate Metal-Organic Framework (Mg-gallate).
    Ismail M; Bustam MA; Kari NEF; Yeong YF
    Molecules; 2023 Mar; 28(7):. PubMed ID: 37049778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do New MOFs Perform Better for CO
    Avci G; Erucar I; Keskin S
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41567-41579. PubMed ID: 32818375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational study of adsorption and separation of CO2, CH4, and N2 by an rht-type metal-organic framework.
    Zhang Z; Li Z; Li J
    Langmuir; 2012 Aug; 28(33):12122-33. PubMed ID: 22849864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Exploration of Adsorption Space for Separations in Metal-Organic Frameworks Combining the Use of Molecular Simulations, Machine Learning, and Ideal Adsorbed Solution Theory.
    Yu X; Tang D; Chng JY; Sholl DS
    J Phys Chem C Nanomater Interfaces; 2023 Sep; 127(38):19229-19239. PubMed ID: 37791097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption-Based Separation of Near-Azeotropic Mixtures-A Challenging Example for High-Throughput Development of Adsorbents.
    Tang D; Gharagheizi F; Sholl DS
    J Phys Chem B; 2021 Jan; 125(3):926-936. PubMed ID: 33448857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption study of CO2, CH4, N2, and H2O on an interwoven copper carboxylate metal-organic framework (MOF-14).
    Karra JR; Grabicka BE; Huang YG; Walton KS
    J Colloid Interface Sci; 2013 Feb; 392():331-336. PubMed ID: 23158044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorptive separation of xenon/krypton mixtures using a zirconium-based metal-organic framework with high hydrothermal and radioactive stabilities.
    Lee SJ; Yoon TU; Kim AR; Kim SY; Cho KH; Hwang YK; Yeon JW; Bae YS
    J Hazard Mater; 2016 Dec; 320():513-520. PubMed ID: 27597151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unlocking the Effect of H
    Erucar I; Keskin S
    Ind Eng Chem Res; 2020 Feb; 59(7):3141-3152. PubMed ID: 32201455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Screening of MOFs for Acetylene Separation.
    Nemati Vesali Azar A; Keskin S
    Front Chem; 2018; 6():36. PubMed ID: 29536004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Screening of Metal-Organic Frameworks for Membrane-Based CO
    Daglar H; Keskin S
    J Phys Chem C Nanomater Interfaces; 2018 Aug; 122(30):17347-17357. PubMed ID: 30093931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting adsorption selectivities from pure gas isotherms for gas mixtures in metal-organic frameworks.
    Kundu A; Sillar K; Sauer J
    Chem Sci; 2019 Dec; 11(3):643-655. PubMed ID: 34123036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.