These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 34241310)
1. The lower bound of the network connectivity guaranteeing in-phase synchronization. Yoneda R; Tatsukawa T; Teramae JN Chaos; 2021 Jun; 31(6):063124. PubMed ID: 34241310 [TBL] [Abstract][Full Text] [Related]
2. Sufficiently dense Kuramoto networks are globally synchronizing. Kassabov M; Strogatz SH; Townsend A Chaos; 2021 Jul; 31(7):073135. PubMed ID: 34340322 [TBL] [Abstract][Full Text] [Related]
3. Dense networks that do not synchronize and sparse ones that do. Townsend A; Stillman M; Strogatz SH Chaos; 2020 Aug; 30(8):083142. PubMed ID: 32872810 [TBL] [Abstract][Full Text] [Related]
4. Stability of twisted states on lattices of Kuramoto oscillators. Goebel M; Mizuhara MS; Stepanoff S Chaos; 2021 Oct; 31(10):103106. PubMed ID: 34717314 [TBL] [Abstract][Full Text] [Related]
5. The size of the sync basin. Wiley DA; Strogatz SH; Girvan M Chaos; 2006 Mar; 16(1):015103. PubMed ID: 16599769 [TBL] [Abstract][Full Text] [Related]
6. Synchronization of phase oscillators with frequency-weighted coupling. Xu C; Sun Y; Gao J; Qiu T; Zheng Z; Guan S Sci Rep; 2016 Feb; 6():21926. PubMed ID: 26903110 [TBL] [Abstract][Full Text] [Related]
7. Bifurcations in the Kuramoto model on graphs. Chiba H; Medvedev GS; Mizuhara MS Chaos; 2018 Jul; 28(7):073109. PubMed ID: 30070519 [TBL] [Abstract][Full Text] [Related]
8. Multistability of twisted states in non-locally coupled Kuramoto-type models. Girnyk T; Hasler M; Maistrenko Y Chaos; 2012 Mar; 22(1):013114. PubMed ID: 22462990 [TBL] [Abstract][Full Text] [Related]
9. Order parameter allows classification of planar graphs based on balanced fixed points in the Kuramoto model. Kaiser F; Alim K Phys Rev E; 2019 May; 99(5-1):052308. PubMed ID: 31212471 [TBL] [Abstract][Full Text] [Related]
10. Patterns of synchronization in 2D networks of inhibitory neurons. Miller J; Ryu H; Wang X; Booth V; Campbell SA Front Comput Neurosci; 2022; 16():903883. PubMed ID: 36051629 [TBL] [Abstract][Full Text] [Related]
11. Perturbation analysis of complete synchronization in networks of phase oscillators. Tönjes R; Blasius B Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026202. PubMed ID: 19792226 [TBL] [Abstract][Full Text] [Related]
12. Stability of twisted states in power-law-coupled Kuramoto oscillators on a circle with and without time delay. Lee HS; Kim BJ; Park HJ Phys Rev E; 2024 Jun; 109(6-1):064203. PubMed ID: 39020983 [TBL] [Abstract][Full Text] [Related]
13. SYNCHRONIZATION OF HETEROGENEOUS OSCILLATORS UNDER NETWORK MODIFICATIONS: PERTURBATION AND OPTIMIZATION OF THE SYNCHRONY ALIGNMENT FUNCTION. Taylor D; Skardal PS; Sun J SIAM J Appl Math; 2016; 76(5):1984-2008. PubMed ID: 27872501 [TBL] [Abstract][Full Text] [Related]
14. The number of synaptic inputs and the synchrony of large, sparse neuronal networks. Golomb D; Hansel D Neural Comput; 2000 May; 12(5):1095-139. PubMed ID: 10905810 [TBL] [Abstract][Full Text] [Related]
15. Increasing sync rate of pulse-coupled oscillators via phase response function design: theory and application to wireless networks. Wang Y; Núñez F; Doyle FJ IEEE Trans Control Syst Technol; 2012 Jul; 21(4):. PubMed ID: 24391404 [TBL] [Abstract][Full Text] [Related]
16. Driven synchronization in random networks of oscillators. Hindes J; Myers CR Chaos; 2015 Jul; 25(7):073119. PubMed ID: 26232970 [TBL] [Abstract][Full Text] [Related]
17. Explosive synchronization coexists with classical synchronization in the Kuramoto model. Danziger MM; Moskalenko OI; Kurkin SA; Zhang X; Havlin S; Boccaletti S Chaos; 2016 Jun; 26(6):065307. PubMed ID: 27369869 [TBL] [Abstract][Full Text] [Related]
18. Delays induced cluster synchronization in chaotic networks. Nathe C; Huang K; Lodi M; Storace M; Sorrentino F Chaos; 2020 Dec; 30(12):121105. PubMed ID: 33380030 [TBL] [Abstract][Full Text] [Related]
19. Extended mean-field approach for chimera states in random complex networks. Yi S; Um J; Kahng B Chaos; 2022 Mar; 32(3):033108. PubMed ID: 35364834 [TBL] [Abstract][Full Text] [Related]
20. Functionability in complex networks: Leading nodes for the transition from structural to functional networks through remote asynchronization. Rosell-Tarragó G; Díaz-Guilera A Chaos; 2020 Jan; 30(1):013105. PubMed ID: 32013516 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]