BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34241343)

  • 1. First principles reactive simulation for equation of state prediction.
    Jadrich RB; Ticknor C; Leiding JA
    J Chem Phys; 2021 Jun; 154(24):244307. PubMed ID: 34241343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete equations of state for PETN and its products from atomistic simulations.
    Sergeev OV; Mukhanov AE; Murzov SA; Yanilkin AV
    Phys Chem Chem Phys; 2020 Dec; 22(47):27572-27580. PubMed ID: 33236737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical prediction of steady-state detonation properties of condensed-phase explosives.
    Cengiz F; Ulas A
    J Hazard Mater; 2009 Dec; 172(2-3):1646-51. PubMed ID: 19747772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular simulations of Hugoniots of detonation product mixtures at chemical equilibrium: microscopic calculation of the Chapman-Jouguet state.
    Bourasseau E; Dubois V; Desbiens N; Maillet JB
    J Chem Phys; 2007 Aug; 127(8):084513. PubMed ID: 17764275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Chemical Reaction Process after Pentaerythritol Tetranitrate Hot Spot Ignition.
    Zhang Y; Li Q; He Y
    ACS Omega; 2020 Nov; 5(45):28984-28991. PubMed ID: 33225129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of the Chapman-Jouguet chemical equilibrium state in a detonation wave from first principles based reactive molecular dynamics.
    Guo D; Zybin SV; An Q; Goddard WA; Huang F
    Phys Chem Chem Phys; 2016 Jan; 18(3):2015-22. PubMed ID: 26688211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Explanation of the colossal detonation sensitivity of silicon pentaerythritol tetranitrate (Si-PETN) explosive.
    Liu WG; Zybin SV; Dasgupta S; Klapötke TM; Goddard WA
    J Am Chem Soc; 2009 Jun; 131(22):7490-1. PubMed ID: 19489634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast Shock-Induced Reactions in Pentaerythritol Tetranitrate Thin Films.
    Park SD; Armstrong MR; Kohl IT; Zaug JM; Knepper R; Tappan AS; Bastea S; Kay JJ
    J Phys Chem A; 2018 Oct; 122(41):8101-8106. PubMed ID: 30272981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of detonation performance of CHNO and CHNOAl explosives through molecular structure.
    Keshavarz MH
    J Hazard Mater; 2009 Jul; 166(2-3):1296-301. PubMed ID: 19157709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicted detonation properties at the Chapman-Jouguet state for proposed energetic materials (MTO and MTO3N) from combined ReaxFF and quantum mechanics reactive dynamics.
    Zhou T; Zybin SV; Goddard WA; Cheng T; Naserifar S; Jaramillo-Botero A; Huang F
    Phys Chem Chem Phys; 2018 Feb; 20(6):3953-3969. PubMed ID: 29367992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive model of explosive detonation parameters from an equation of state based on detonation velocity.
    G Bastante F; Araújo M; Giráldez E
    Phys Chem Chem Phys; 2022 Apr; 24(14):8189-8195. PubMed ID: 35348569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrostatic Pressure Effects on Structural and Electronic Properties of ETN and PETN from First-Principles Calculations.
    Fedorov IA; Fedorova TP; Zhuravlev YN
    J Phys Chem A; 2016 May; 120(20):3710-7. PubMed ID: 27128718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photochemistry of the α-Al₂O₃-PETN Interface.
    Tsyshevsky RV; Zverev A; Mitrofanov A; Rashkeev SN; Kuklja MM
    Molecules; 2016 Feb; 21(3):289. PubMed ID: 26938517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal Stability and Detonation Properties of Potassium 4,4'-Bis(dinitromethyl)-3,3'-azofurazanate, an Environmentally Friendly Energetic Three-Dimensional Metal-Organic Framework.
    Guo D; An Q
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1512-1519. PubMed ID: 30525412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical analysis of the terahertz spectrum of the high explosive PETN.
    Allis DG; Korter TM
    Chemphyschem; 2006 Nov; 7(11):2398-408. PubMed ID: 17042039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new computer code to evaluate detonation performance of high explosives and their thermochemical properties, part I.
    Keshavarz MH; Motamedoshariati H; Moghayadnia R; Nazari HR; Azarniamehraban J
    J Hazard Mater; 2009 Dec; 172(2-3):1218-28. PubMed ID: 19713037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering the Microstructure and Morphology of Explosive Films
    Forrest EC; Knepper R; Brumbach MT; Rodriguez MA; Archuleta K; Marquez MP; Tappan AS
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1670-1681. PubMed ID: 33351583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple correlation for predicting detonation velocity of ideal and non-ideal explosives.
    Keshavarz MH
    J Hazard Mater; 2009 Jul; 166(2-3):762-9. PubMed ID: 19135789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Potential Molecular Dynamics Study of Chapman-Jouguet Detonation Events of Energetic Materials.
    Zhang J; Guo W; Yao Y
    J Phys Chem Lett; 2023 Aug; 14(32):7141-7148. PubMed ID: 37535980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.