These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 34241343)
1. First principles reactive simulation for equation of state prediction. Jadrich RB; Ticknor C; Leiding JA J Chem Phys; 2021 Jun; 154(24):244307. PubMed ID: 34241343 [TBL] [Abstract][Full Text] [Related]
2. Complete equations of state for PETN and its products from atomistic simulations. Sergeev OV; Mukhanov AE; Murzov SA; Yanilkin AV Phys Chem Chem Phys; 2020 Dec; 22(47):27572-27580. PubMed ID: 33236737 [TBL] [Abstract][Full Text] [Related]
3. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
4. Numerical prediction of steady-state detonation properties of condensed-phase explosives. Cengiz F; Ulas A J Hazard Mater; 2009 Dec; 172(2-3):1646-51. PubMed ID: 19747772 [TBL] [Abstract][Full Text] [Related]
5. Molecular simulations of Hugoniots of detonation product mixtures at chemical equilibrium: microscopic calculation of the Chapman-Jouguet state. Bourasseau E; Dubois V; Desbiens N; Maillet JB J Chem Phys; 2007 Aug; 127(8):084513. PubMed ID: 17764275 [TBL] [Abstract][Full Text] [Related]
6. Analysis of Chemical Reaction Process after Pentaerythritol Tetranitrate Hot Spot Ignition. Zhang Y; Li Q; He Y ACS Omega; 2020 Nov; 5(45):28984-28991. PubMed ID: 33225129 [TBL] [Abstract][Full Text] [Related]
7. Prediction of the Chapman-Jouguet chemical equilibrium state in a detonation wave from first principles based reactive molecular dynamics. Guo D; Zybin SV; An Q; Goddard WA; Huang F Phys Chem Chem Phys; 2016 Jan; 18(3):2015-22. PubMed ID: 26688211 [TBL] [Abstract][Full Text] [Related]
8. Explanation of the colossal detonation sensitivity of silicon pentaerythritol tetranitrate (Si-PETN) explosive. Liu WG; Zybin SV; Dasgupta S; Klapötke TM; Goddard WA J Am Chem Soc; 2009 Jun; 131(22):7490-1. PubMed ID: 19489634 [TBL] [Abstract][Full Text] [Related]
10. Prediction of detonation performance of CHNO and CHNOAl explosives through molecular structure. Keshavarz MH J Hazard Mater; 2009 Jul; 166(2-3):1296-301. PubMed ID: 19157709 [TBL] [Abstract][Full Text] [Related]
11. Predicted detonation properties at the Chapman-Jouguet state for proposed energetic materials (MTO and MTO3N) from combined ReaxFF and quantum mechanics reactive dynamics. Zhou T; Zybin SV; Goddard WA; Cheng T; Naserifar S; Jaramillo-Botero A; Huang F Phys Chem Chem Phys; 2018 Feb; 20(6):3953-3969. PubMed ID: 29367992 [TBL] [Abstract][Full Text] [Related]
12. Predictive model of explosive detonation parameters from an equation of state based on detonation velocity. G Bastante F; Araújo M; Giráldez E Phys Chem Chem Phys; 2022 Apr; 24(14):8189-8195. PubMed ID: 35348569 [TBL] [Abstract][Full Text] [Related]
13. Hydrostatic Pressure Effects on Structural and Electronic Properties of ETN and PETN from First-Principles Calculations. Fedorov IA; Fedorova TP; Zhuravlev YN J Phys Chem A; 2016 May; 120(20):3710-7. PubMed ID: 27128718 [TBL] [Abstract][Full Text] [Related]
14. Photochemistry of the α-Al₂O₃-PETN Interface. Tsyshevsky RV; Zverev A; Mitrofanov A; Rashkeev SN; Kuklja MM Molecules; 2016 Feb; 21(3):289. PubMed ID: 26938517 [TBL] [Abstract][Full Text] [Related]
15. Thermal Stability and Detonation Properties of Potassium 4,4'-Bis(dinitromethyl)-3,3'-azofurazanate, an Environmentally Friendly Energetic Three-Dimensional Metal-Organic Framework. Guo D; An Q ACS Appl Mater Interfaces; 2019 Jan; 11(1):1512-1519. PubMed ID: 30525412 [TBL] [Abstract][Full Text] [Related]
16. Theoretical analysis of the terahertz spectrum of the high explosive PETN. Allis DG; Korter TM Chemphyschem; 2006 Nov; 7(11):2398-408. PubMed ID: 17042039 [TBL] [Abstract][Full Text] [Related]
17. A new computer code to evaluate detonation performance of high explosives and their thermochemical properties, part I. Keshavarz MH; Motamedoshariati H; Moghayadnia R; Nazari HR; Azarniamehraban J J Hazard Mater; 2009 Dec; 172(2-3):1218-28. PubMed ID: 19713037 [TBL] [Abstract][Full Text] [Related]
18. Engineering the Microstructure and Morphology of Explosive Films Forrest EC; Knepper R; Brumbach MT; Rodriguez MA; Archuleta K; Marquez MP; Tappan AS ACS Appl Mater Interfaces; 2021 Jan; 13(1):1670-1681. PubMed ID: 33351583 [TBL] [Abstract][Full Text] [Related]
19. Simple correlation for predicting detonation velocity of ideal and non-ideal explosives. Keshavarz MH J Hazard Mater; 2009 Jul; 166(2-3):762-9. PubMed ID: 19135789 [TBL] [Abstract][Full Text] [Related]
20. Deep Potential Molecular Dynamics Study of Chapman-Jouguet Detonation Events of Energetic Materials. Zhang J; Guo W; Yao Y J Phys Chem Lett; 2023 Aug; 14(32):7141-7148. PubMed ID: 37535980 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]