BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34241347)

  • 1. Improving the SAFT-γ Mie equation of state to account for functional group interactions in a structural (s-SAFT-γ Mie) framework: Linear and branched alkanes.
    Shaahmadi F; Hurter RM; Burger AJ; Cripwell JT
    J Chem Phys; 2021 Jun; 154(24):244102. PubMed ID: 34241347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Group contribution methodology based on the statistical associating fluid theory for heteronuclear molecules formed from Mie segments.
    Papaioannou V; Lafitte T; Avendaño C; Adjiman CS; Jackson G; Müller EA; Galindo A
    J Chem Phys; 2014 Feb; 140(5):054107. PubMed ID: 24511922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A group contribution method for associating chain molecules based on the statistical associating fluid theory (SAFT-gamma).
    Lymperiadis A; Adjiman CS; Galindo A; Jackson G
    J Chem Phys; 2007 Dec; 127(23):234903. PubMed ID: 18154411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SAFT-γ force field for the simulation of molecular fluids: 2. Coarse-grained models of greenhouse gases, refrigerants, and long alkanes.
    Avendaño C; Lafitte T; Adjiman CS; Galindo A; Müller EA; Jackson G
    J Phys Chem B; 2013 Mar; 117(9):2717-33. PubMed ID: 23311931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a fused-sphere SAFT-γ Mie force field for poly(vinyl alcohol) and poly(ethylene).
    Walker CC; Genzer J; Santiso EE
    J Chem Phys; 2019 Jan; 150(3):034901. PubMed ID: 30660157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extending the fused-sphere SAFT-γ Mie force field parameterization approach to poly(vinyl butyral) copolymers.
    Walker CC; Genzer J; Santiso EE
    J Chem Phys; 2020 Jan; 152(4):044903. PubMed ID: 32007037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate statistical associating fluid theory for chain molecules formed from Mie segments.
    Lafitte T; Apostolakou A; Avendaño C; Galindo A; Adjiman CS; Müller EA; Jackson G
    J Chem Phys; 2013 Oct; 139(15):154504. PubMed ID: 24160524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SAFT-γ Force Field for the Simulation of Molecular Fluids. 5. Hetero-Group Coarse-Grained Models of Linear Alkanes and the Importance of Intramolecular Interactions.
    Rahman S; Lobanova O; Jiménez-Serratos G; Braga C; Raptis V; Müller EA; Jackson G; Avendaño C; Galindo A
    J Phys Chem B; 2018 Oct; 122(39):9161-9177. PubMed ID: 30179489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extension of the SAFT-VR Mie EoS To Model Homonuclear Rings and Its Parametrization Based on the Principle of Corresponding States.
    Müller EA; Mejía A
    Langmuir; 2017 Oct; 33(42):11518-11529. PubMed ID: 28602088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An accurate density functional theory for the vapor-liquid interface of chain molecules based on the statistical associating fluid theory for potentials of variable range for Mie chainlike fluids.
    Algaba J; Míguez JM; Mendiboure B; Blas FJ
    Phys Chem Chem Phys; 2019 Jun; 21(22):11937-11948. PubMed ID: 31134241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab initio development of generalized Lennard-Jones (Mie) force fields for predictions of thermodynamic properties in advanced molecular-based SAFT equations of state.
    Walker PJ; Zhao T; Haslam AJ; Jackson G
    J Chem Phys; 2022 Apr; 156(15):154106. PubMed ID: 35459299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multipolar SAFT-VR Mie Equation of State: Predictions of Phase Equilibria in Refrigerant Systems with No Binary Interaction Parameter.
    Paricaud P
    J Phys Chem B; 2023 Apr; 127(13):3052-3070. PubMed ID: 36977318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SAFT-γ-Mie Cross-Interaction Parameters from Density Functional Theory-Predicted Multipoles of Molecular Fragments for Carbon Dioxide, Benzene, Alkanes, and Water.
    Clark JA; Santiso EE
    J Phys Chem B; 2021 Apr; 125(15):3867-3882. PubMed ID: 33826844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. II. Confined fluids and vapor-liquid interfaces.
    Ghobadi AF; Elliott JR
    J Chem Phys; 2014 Jul; 141(2):024708. PubMed ID: 25028039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SAFT-γ force field for the simulation of molecular fluids. 1. A single-site coarse grained model of carbon dioxide.
    Avendaño C; Lafitte T; Galindo A; Adjiman CS; Jackson G; Müller EA
    J Phys Chem B; 2011 Sep; 115(38):11154-69. PubMed ID: 21815624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a renormalization-group treatment to the statistical associating fluid theory for potentials of variable range (SAFT-VR).
    Forte E; Llovell F; Vega LF; Trusler JP; Galindo A
    J Chem Phys; 2011 Apr; 134(15):154102. PubMed ID: 21513370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transferable Anisotropic United-Atom Force Field Based on the Mie Potential for Phase Equilibrium Calculations: n-Alkanes and n-Olefins.
    Hemmen A; Gross J
    J Phys Chem B; 2015 Sep; 119(35):11695-707. PubMed ID: 26274900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density functional theory for the prediction of interfacial properties of molecular fluids within the SAFT-γ coarse-grained approach.
    Algaba J; Mendiboure B; Gómez-Álvarez P; Blas FJ
    RSC Adv; 2022 Jun; 12(29):18821-18833. PubMed ID: 35873311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deriving force fields with a multiscale approach: From ab initio calculations to molecular-based equations of state.
    Lyra EP; Franco LFM
    J Chem Phys; 2022 Sep; 157(11):114107. PubMed ID: 36137802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous estimation of phase behavior and second-derivative properties using the statistical associating fluid theory with variable range approach.
    Lafitte T; Bessieres D; Piñeiro MM; Daridon JL
    J Chem Phys; 2006 Jan; 124(2):024509. PubMed ID: 16422613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.