These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34241353)

  • 1. Quantum chemistry for molecules at extreme pressure on graphical processing units: Implementation of extreme-pressure polarizable continuum model.
    Gale A; Hruska E; Liu F
    J Chem Phys; 2021 Jun; 154(24):244103. PubMed ID: 34241353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum Chemistry for Solvated Molecules on Graphical Processing Units Using Polarizable Continuum Models.
    Liu F; Luehr N; Kulik HJ; Martínez TJ
    J Chem Theory Comput; 2015 Jul; 11(7):3131-44. PubMed ID: 26575750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Pressure Reaction Profiles and Activation Volumes of 1,3-Cyclohexadiene Dimerizations Computed by the Extreme Pressure-Polarizable Continuum Model (XP-PCM).
    Chen B; Houk KN; Cammi R
    Chemistry; 2022 May; 28(29):e202200246. PubMed ID: 35286727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation and analysis of the harmonic vibrational frequencies in molecules at extreme pressure: methodology and diborane as a test case.
    Cammi R; Cappelli C; Mennucci B; Tomasi J
    J Chem Phys; 2012 Oct; 137(15):154112. PubMed ID: 23083153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward an Understanding of the Pressure Effect on the Intramolecular Vibrational Frequencies of Sulfur Hexafluoride.
    Boccalini M; Cammi R; Pagliai M; Cardini G; Schettino V
    J Phys Chem A; 2021 Jul; 125(29):6362-6373. PubMed ID: 34263605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling Molecular Systems at Extreme Pressure by an Extension of the Polarizable Continuum Model (PCM) Based on the Symmetry-Adapted Cluster-Configuration Interaction (SAC-CI) Method: Confined Electronic Excited States of Furan as a Test Case.
    Fukuda R; Ehara M; Cammi R
    J Chem Theory Comput; 2015 May; 11(5):2063-76. PubMed ID: 26574410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient implementation of the analytical second derivatives of hartree-fock and hybrid DFT energies within the framework of the conductor-like polarizable continuum model.
    Garcia-Ratés M; Neese F
    J Comput Chem; 2019 Jul; 40(20):1816-1828. PubMed ID: 30938846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The second derivative of the electronic energy with respect to the compression scaling factor in the XP-PCM model: Theory and applications to compression response functions of atoms.
    Cammi R; Chen B
    J Comput Chem; 2022 Jun; 43(17):1176-1185. PubMed ID: 35506517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new extension of the polarizable continuum model: Toward a quantum chemical description of chemical reactions at extreme high pressure.
    Cammi R
    J Comput Chem; 2015 Nov; 36(30):2246-59. PubMed ID: 26487387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio nonadiabatic dynamics of multichromophore complexes: a scalable graphical-processing-unit-accelerated exciton framework.
    Sisto A; Glowacki DR; Martinez TJ
    Acc Chem Res; 2014 Sep; 47(9):2857-66. PubMed ID: 25186064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Precision for Electron Repulsion Integral Evaluation on Graphical Processing Units (GPUs).
    Luehr N; Ufimtsev IS; Martínez TJ
    J Chem Theory Comput; 2011 Apr; 7(4):949-54. PubMed ID: 26606344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acceleration of Electron Repulsion Integral Evaluation on Graphics Processing Units via Use of Recurrence Relations.
    Miao Y; Merz KM
    J Chem Theory Comput; 2013 Feb; 9(2):965-76. PubMed ID: 26588740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum Chemistry on Graphical Processing Units. 1. Strategies for Two-Electron Integral Evaluation.
    Ufimtsev IS; Martínez TJ
    J Chem Theory Comput; 2008 Feb; 4(2):222-31. PubMed ID: 26620654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights on the Realgar Crystal Under Pressure from XP-PCM and Periodic Model Calculations.
    Caratelli C; Cammi R; Chelli R; Pagliai M; Cardini G; Schettino V
    J Phys Chem A; 2017 Nov; 121(46):8825-8834. PubMed ID: 29083904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DFT calculations in solution systems: solvation energy, dispersion energy and entropy.
    Liu SC; Zhu XR; Liu DY; Fang DC
    Phys Chem Chem Phys; 2023 Jan; 25(2):913-931. PubMed ID: 36519338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structures and properties of electronically excited chromophores in solution from the polarizable continuum model coupled to the time-dependent density functional theory.
    Mennucci B; Cappelli C; Guido CA; Cammi R; Tomasi J
    J Phys Chem A; 2009 Apr; 113(13):3009-20. PubMed ID: 19226132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conceptual density functional theory under pressure: Part I. XP-PCM method applied to atoms.
    Eeckhoudt J; Bettens T; Geerlings P; Cammi R; Chen B; Alonso M; De Proft F
    Chem Sci; 2022 Aug; 13(32):9329-9350. PubMed ID: 36093025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitation energies in solution: the fully polarizable QM/MM/PCM method.
    Steindal AH; Ruud K; Frediani L; Aidas K; Kongsted J
    J Phys Chem B; 2011 Mar; 115(12):3027-37. PubMed ID: 21391548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multireference Perturbation Theory Combined with PCM and RISM Solvation Models: A Benchmark Study for Chemical Energetics.
    Saitow M; Hori K; Yoshikawa A; Shimizu RY; Yokogawa D; Yanai T
    J Phys Chem A; 2021 Sep; 125(37):8324-8336. PubMed ID: 34516121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DFTB/PCM Applied to Ground and Excited State Potential Energy Surfaces.
    Nishimoto Y
    J Phys Chem A; 2016 Feb; 120(5):771-84. PubMed ID: 26761635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.