These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34241353)

  • 21. Solvation model induced structural changes in peptides. A quantum chemical study on Ramachandran surfaces and conformers of alanine diamide using the polarizable continuum model.
    Hudáky I; Hudáky P; Perczel A
    J Comput Chem; 2004 Sep; 25(12):1522-31. PubMed ID: 15224396
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Double-buffered, heterogeneous CPU + GPU integral digestion algorithm for single-excitation calculations involving a large number of excited states.
    Morrison AF; Epifanovsky E; Herbert JM
    J Comput Chem; 2018 Oct; 39(26):2173-2182. PubMed ID: 30368836
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Effect of Pressure on Organic Reactions in Fluids-a New Theoretical Perspective.
    Chen B; Hoffmann R; Cammi R
    Angew Chem Int Ed Engl; 2017 Sep; 56(37):11126-11142. PubMed ID: 28738450
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wavelet formulation of the polarizable continuum model.
    Weijo V; Randrianarivony M; Harbrecht H; Frediani L
    J Comput Chem; 2010 May; 31(7):1469-77. PubMed ID: 19834886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analytical calculation of pressure for confined atomic and molecular systems using the eXtreme-Pressure Polarizable Continuum Model.
    Cammi R; Chen B; Rahm M
    J Comput Chem; 2018 Oct; 39(26):2243-2250. PubMed ID: 30242867
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational Spectroscopy of Large Systems in Solution: The DFTB/PCM and TD-DFTB/PCM Approach.
    Barone V; Carnimeo I; Scalmani G
    J Chem Theory Comput; 2013 Apr; 9(4):2052-71. PubMed ID: 26583552
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Excitation energy transfer (EET) between molecules in condensed matter: a novel application of the polarizable continuum model (PCM).
    Iozzi MF; Mennucci B; Tomasi J; Cammi R
    J Chem Phys; 2004 Apr; 120(15):7029-40. PubMed ID: 15267604
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of polarizable continuum model and quantum mechanics/molecular mechanics solute electronic polarization: study of the optical and magnetic properties of diazines in water.
    Manzoni V; Lyra ML; Coutinho K; Canuto S
    J Chem Phys; 2011 Oct; 135(14):144103. PubMed ID: 22010694
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CCSD-PCM: improving upon the reference reaction field approximation at no cost.
    Caricato M
    J Chem Phys; 2011 Aug; 135(7):074113. PubMed ID: 21861562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The fragment molecular orbital method combined with density-functional tight-binding and the polarizable continuum model.
    Nishimoto Y; Fedorov DG
    Phys Chem Chem Phys; 2016 Aug; 18(32):22047-61. PubMed ID: 27215663
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acceleration of High Angular Momentum Electron Repulsion Integrals and Integral Derivatives on Graphics Processing Units.
    Miao Y; Merz KM
    J Chem Theory Comput; 2015 Apr; 11(4):1449-62. PubMed ID: 26574356
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy gradients in combined fragment molecular orbital and polarizable continuum model (FMO/PCM) calculation.
    Li H; Fedorov DG; Nagata T; Kitaura K; Jensen JH; Gordon MS
    J Comput Chem; 2010 Mar; 31(4):778-90. PubMed ID: 19569184
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Real-Space Density Functional Theory on Graphical Processing Units: Computational Approach and Comparison to Gaussian Basis Set Methods.
    Andrade X; Aspuru-Guzik A
    J Chem Theory Comput; 2013 Oct; 9(10):4360-73. PubMed ID: 26589153
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Convergence of Excitation Energies in Mixed Quantum and Classical Solvent: Comparison of Continuum and Point Charge Models.
    Provorse MR; Peev T; Xiong C; Isborn CM
    J Phys Chem B; 2016 Dec; 120(47):12148-12159. PubMed ID: 27797196
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO).
    Fedorov DG; Kitaura K; Li H; Jensen JH; Gordon MS
    J Comput Chem; 2006 Jun; 27(8):976-85. PubMed ID: 16604514
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theoretical modeling of large molecular systems. Advances in the local self consistent field method for mixed quantum mechanics/molecular mechanics calculations.
    Monari A; Rivail JL; Assfeld X
    Acc Chem Res; 2013 Feb; 46(2):596-603. PubMed ID: 23249409
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TAO-DFT with the Polarizable Continuum Model.
    Seenithurai S; Chai JD
    Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242010
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Finite-field method with unbiased polarizable continuum model for evaluation of the second hyperpolarizability of an open-shell singlet molecule in solvents.
    Inui T; Shigeta Y; Okuno K; Baba T; Kishi R; Nakano M
    J Comput Chem; 2013 Oct; 34(27):2345-52. PubMed ID: 23913641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How to model solvent effects on molecular properties using quantum chemistry? Insights from polarizable discrete or continuum solvation models.
    Kongsted J; Mennucci B
    J Phys Chem A; 2007 Oct; 111(39):9890-900. PubMed ID: 17845016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.