These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34241356)

  • 1. Collective effects in confined active Brownian particles.
    Caprini L; Maggi C; Marini Bettolo Marconi U
    J Chem Phys; 2021 Jun; 154(24):244901. PubMed ID: 34241356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial velocity correlations in inertial systems of active Brownian particles.
    Caprini L; Marini Bettolo Marconi U
    Soft Matter; 2021 Apr; 17(15):4109-4121. PubMed ID: 33734261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flocking without Alignment Interactions in Attractive Active Brownian Particles.
    Caprini L; Löwen H
    Phys Rev Lett; 2023 Apr; 130(14):148202. PubMed ID: 37084461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collective motion of active Brownian particles with polar alignment.
    Martín-Gómez A; Levis D; Díaz-Guilera A; Pagonabarraga I
    Soft Matter; 2018 Apr; 14(14):2610-2618. PubMed ID: 29569673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Velocity alignment leads to high persistence in confined cells.
    Camley BA; Rappel WJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062705. PubMed ID: 25019812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal dynamics of a self-propelled system with opposing alignment and repulsive forces.
    Mohapatra S; Mondal S; Mahapatra PS
    Phys Rev E; 2020 Oct; 102(4-1):042613. PubMed ID: 33212711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noisy multistate voter model for flocking in finite dimensions.
    Loscar ES; Baglietto G; Vazquez F
    Phys Rev E; 2021 Sep; 104(3-1):034111. PubMed ID: 34654099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A single active ring model with velocity self-alignment.
    Teixeira EF; Fernandes HCM; Brunnet LG
    Soft Matter; 2021 Jun; 17(24):5991-6000. PubMed ID: 34048522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noise-induced swarming of active particles.
    Zheng C; Tönjes R
    Phys Rev E; 2022 Dec; 106(6-1):064601. PubMed ID: 36671170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the self-organization of confined active particles by the steepness of the trap.
    Rana S; Samsuzzaman M; Saha A
    Soft Matter; 2019 Nov; 15(43):8865-8878. PubMed ID: 31616877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collective motion patterns of self-propelled agents with both velocity alignment and aggregation interactions.
    Li B; Wu ZX; Guan JY
    Phys Rev E; 2019 Feb; 99(2-1):022609. PubMed ID: 30934226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear response and emerging nonequilibrium microstructures for biased diffusion in confined crowded environments.
    Bénichou O; Illien P; Oshanin G; Sarracino A; Voituriez R
    Phys Rev E; 2016 Mar; 93(3):032128. PubMed ID: 27078313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of particle fraction on phase transitions in an active-passive particles system.
    Agrawal NK; Mahapatra PS
    Phys Rev E; 2020 Apr; 101(4-1):042607. PubMed ID: 32422756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collective motion in large deviations of active particles.
    Keta YE; Fodor É; van Wijland F; Cates ME; Jack RL
    Phys Rev E; 2021 Feb; 103(2-1):022603. PubMed ID: 33736055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence of Collective Motion in a Model of Interacting Brownian Particles.
    Dossetti V; Sevilla FJ
    Phys Rev Lett; 2015 Jul; 115(5):058301. PubMed ID: 26274444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and numerical study of a second-order transition in the behavior of confined self-propelled particles.
    Barone E; Patterson GA
    Phys Rev E; 2024 May; 109(5-1):054609. PubMed ID: 38907499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulations of structure formation by confined dipolar active particles.
    Telezki V; Klumpp S
    Soft Matter; 2020 Dec; 16(46):10537-10547. PubMed ID: 33078178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Keeping speed and distance for aligned motion.
    Farkas IJ; Kun J; Jin Y; He G; Xu M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012807. PubMed ID: 25679657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical self-assembly of dipolar active Brownian particles in two dimensions.
    Liao GJ; Hall CK; Klapp SHL
    Soft Matter; 2020 Mar; 16(9):2208-2223. PubMed ID: 32090218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disordered Collective Motion in Dense Assemblies of Persistent Particles.
    Keta YE; Jack RL; Berthier L
    Phys Rev Lett; 2022 Jul; 129(4):048002. PubMed ID: 35939008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.