These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34241366)

  • 1. Spatial arrangements of spherical nanoparticles on lipid vesicles.
    Spangler EJ; Laradji M
    J Chem Phys; 2021 Jun; 154(24):244902. PubMed ID: 34241366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modes of adhesion of two Janus nanoparticles on the outer or inner side of lipid vesicles.
    Zhu Y; Sharma A; Spangler EJ; Laradji M
    Soft Matter; 2022 Jun; 18(25):4689-4698. PubMed ID: 35702934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adhesion and Aggregation of Spherical Nanoparticles on Lipid Membranes.
    Laradji M; Kumar PBS; Spangler EJ
    Chem Phys Lipids; 2020 Nov; 233():104989. PubMed ID: 33120231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane-mediated dimerization of spherocylindrical nanoparticles.
    Sharma A; Zhu Y; Spangler EJ; Carrillo JY; Laradji M
    Soft Matter; 2023 Feb; 19(8):1499-1512. PubMed ID: 36723357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Ordered Nanoassemblies of Janus Spherocylindrical Nanoparticles Adhering to Lipid Vesicles.
    Sharma A; Zhu Y; Spangler EJ; Hoang TB; Laradji M
    ACS Nano; 2024 May; 18(20):12957-12969. PubMed ID: 38720633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modes of adhesion of spherocylindrical nanoparticles to tensionless lipid bilayers.
    Sharma A; Zhu Y; Spangler EJ; Laradji M
    J Chem Phys; 2022 Jun; 156(23):234901. PubMed ID: 35732528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Reconfiguration of Binary Lipid Vesicles via Electrostatically Induced Nanoparticle Adsorption.
    Aydin F; Dutt M
    J Phys Chem B; 2016 Jul; 120(27):6646-56. PubMed ID: 27340906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperative wrapping of nanoparticles of various sizes and shapes by lipid membranes.
    Xiong K; Zhao J; Yang D; Cheng Q; Wang J; Ji H
    Soft Matter; 2017 Jul; 13(26):4644-4652. PubMed ID: 28650048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperative Self-Assembly of Gold Nanoparticles on the Hydrophobic Surface of Vesicles in Water.
    Gorgoll RM; Tsubota T; Harano K; Nakamura E
    J Am Chem Soc; 2015 Jun; 137(24):7568-71. PubMed ID: 26043281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability of membrane-induced self-assemblies of spherical nanoparticles.
    Spangler EJ; Kumar PBS; Laradji M
    Soft Matter; 2018 Jun; 14(24):5019-5030. PubMed ID: 29855646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding, unbinding and aggregation of crescent-shaped nanoparticles on nanoscale tubular membranes.
    Spangler EJ; Olinger AD; Kumar PBS; Laradji M
    Soft Matter; 2021 Jan; 17(4):1016-1027. PubMed ID: 33284936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partial wrapping and spontaneous endocytosis of spherical nanoparticles by tensionless lipid membranes.
    Spangler EJ; Upreti S; Laradji M
    J Chem Phys; 2016 Jan; 144(4):044901. PubMed ID: 26827231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative effect in receptor-mediated endocytosis of multiple nanoparticles.
    Yue T; Zhang X
    ACS Nano; 2012 Apr; 6(4):3196-205. PubMed ID: 22429100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Curvature-mediated cooperative wrapping of multiple nanoparticles at the same and opposite membrane sides.
    Yan Z; Wu Z; Li S; Zhang X; Yi X; Yue T
    Nanoscale; 2019 Nov; 11(42):19751-19762. PubMed ID: 31384870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adhesion and Separation of Nanoparticles on Polymer-Grafted Porous Substrates.
    Santo KP; Vishnyakov A; Brun Y; Neimark AV
    Langmuir; 2018 Jan; 34(4):1481-1496. PubMed ID: 28914540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between charged nanoparticles and vesicles: coarse-grained molecular dynamics simulations.
    Liu L; Zhang J; Zhao X; Mao Z; Liu N; Zhang Y; Liu QH
    Phys Chem Chem Phys; 2016 Nov; 18(46):31946-31957. PubMed ID: 27844088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation of transport and adhesion of thermogenic nano-carriers in microvessels.
    Yue K; You Y; Yang C; Niu Y; Zhang X
    Soft Matter; 2020 Dec; 16(45):10345-10357. PubMed ID: 33053003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation and Properties of a Self-Assembled Nanoparticle-Supported Lipid Bilayer Probed through Molecular Dynamics Simulations.
    Jing H; Wang Y; Desai PR; Ramamurthi KS; Das S
    Langmuir; 2020 May; 36(20):5524-5533. PubMed ID: 32362127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of positively charged sites in the interaction between model cell membranes and γ-Fe
    Zhang H; Wei X; Liu L; Zhang Q; Jiang W
    Sci Total Environ; 2019 Jul; 673():414-423. PubMed ID: 30991331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk.
    Li Y; Kröger M; Liu WK
    Nanoscale; 2015 Oct; 7(40):16631-46. PubMed ID: 26204104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.