These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34241435)

  • 1. Simultaneous measurements of acoustic emission and sonochemical luminescence for monitoring ultrasonic cavitation.
    Kwon O; Pahk KJ; Choi MJ
    J Acoust Soc Am; 2021 Jun; 149(6):4477. PubMed ID: 34241435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic emission spectra and sonochemical activity in a 36 kHz sonoreactor.
    Son Y; Lim M; Khim J; Ashokkumar M
    Ultrason Sonochem; 2012 Jan; 19(1):16-21. PubMed ID: 21705256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward a reference ultrasonic cavitation vessel: Part 2--investigating the spatial variation and acoustic pressure threshold of inertial cavitation in a 25 kHz ultrasound field.
    Hodnett M; Zeqiri B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1809-22. PubMed ID: 18986923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring derived acoustic power of an ultrasound surgical device in the linear and nonlinear operating modes.
    Petosić A; Ivancević B; Svilar D
    Ultrasonics; 2009 Jun; 49(6-7):522-31. PubMed ID: 19217636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sonochemical reactor characterization in the presence of cylindrical and conical reflectors.
    Ferkous H; Hamdaoui O; Pétrier C
    Ultrason Sonochem; 2023 Oct; 99():106556. PubMed ID: 37586183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initial growth of sonochemically active and sonoluminescence bubbles at various frequencies.
    Babgi B; Zhou M; Aksu M; Alghamdi Y; Ashokkumar M
    Ultrason Sonochem; 2016 Mar; 29():55-9. PubMed ID: 26584984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of acoustic parameters on the cavitation behavior of SonoVue microbubbles induced by pulsed ultrasound.
    Lin Y; Lin L; Cheng M; Jin L; Du L; Han T; Xu L; Yu ACH; Qin P
    Ultrason Sonochem; 2017 Mar; 35(Pt A):176-184. PubMed ID: 27707644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-linear Acoustic Emissions from Therapeutically Driven Contrast Agent Microbubbles.
    Song JH; Moldovan A; Prentice P
    Ultrasound Med Biol; 2019 Aug; 45(8):2188-2204. PubMed ID: 31085030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-frequency acoustic emissions generated by a 20 kHz sonochemical horn processor detected using a novel broadband acoustic sensor: a preliminary study.
    Hodnett M; Chow R; Zeqiri B
    Ultrason Sonochem; 2004 Sep; 11(6):441-54. PubMed ID: 15302033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracranial inertial cavitation threshold and thermal ablation lesion creation using MRI-guided 220-kHz focused ultrasound surgery: preclinical investigation.
    Xu Z; Carlson C; Snell J; Eames M; Hananel A; Lopes MB; Raghavan P; Lee CC; Yen CP; Schlesinger D; Kassell NF; Aubry JF; Sheehan J
    J Neurosurg; 2015 Jan; 122(1):152-61. PubMed ID: 25380106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and theoretical characterisation of sonochemical cells. Part 2: cell disruptors (Ultrasonic horns) and cavity cluster collapse.
    Birkin PR; Offin DG; Leighton TG
    Phys Chem Chem Phys; 2005 Feb; 7(3):530-7. PubMed ID: 19785140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of inertial acoustic cavitation in pulsed sonication using a real-time feedback loop system.
    Desjouy C; Poizat A; Gilles B; Inserra C; Bera JC
    J Acoust Soc Am; 2013 Aug; 134(2):1640-6. PubMed ID: 23927204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical cavitation probe using light scattering from bubble clouds.
    Iida Y; Lee J; Kozuka T; Yasui K; Towata A; Tuziuti T
    Ultrason Sonochem; 2009 Apr; 16(4):519-24. PubMed ID: 19138548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast monitoring and control of subharmonic emissions of an unseeded bubble cloud during pulsed sonication.
    Cornu C; Guédra M; Béra JC; Liu HL; Chen WS; Inserra C
    Ultrason Sonochem; 2018 Apr; 42():697-703. PubMed ID: 29429720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sonochemical formation of peroxynitrite in water: Impact of ultrasonic frequency and power.
    Ferkous H; Hamdaoui O; Pétrier C
    Ultrason Sonochem; 2023 Aug; 98():106488. PubMed ID: 37343396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An analysis of the acoustic cavitation noise spectrum: The role of periodic shock waves.
    Song JH; Johansen K; Prentice P
    J Acoust Soc Am; 2016 Oct; 140(4):2494. PubMed ID: 27794293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cavitation-enhanced ultrasound thermal therapy by combined low- and high-frequency ultrasound exposure.
    Liu HL; Chen WS; Chen JS; Shih TC; Chen YY; Lin WL
    Ultrasound Med Biol; 2006 May; 32(5):759-67. PubMed ID: 16677935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards a reference ultrasonic cavitation vessel. Part 1: preliminary investigation of the acoustic field distribution in a 25 kHz cylindrical cell.
    Hodnett M; Choi MJ; Zeqiri B
    Ultrason Sonochem; 2007 Jan; 14(1):29-40. PubMed ID: 16549381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial-temporal dynamics of cavitation bubble clouds in 1.2 MHz focused ultrasound field.
    Chen H; Li X; Wan M
    Ultrason Sonochem; 2006 Sep; 13(6):480-6. PubMed ID: 16571378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin of the broad-band noise in acoustic cavitation.
    Yasui K
    Ultrason Sonochem; 2023 Feb; 93():106276. PubMed ID: 36638653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.