These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34241443)

  • 1. BeamLearning: An end-to-end deep learning approach for the angular localization of sound sources using raw multichannel acoustic pressure data.
    Pujol H; Bavu É; Garcia A
    J Acoust Soc Am; 2021 Jun; 149(6):4248. PubMed ID: 34241443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards End-to-End Acoustic Localization Using Deep Learning: From Audio Signals to Source Position Coordinates.
    Vera-Diaz JM; Pizarro D; Macias-Guarasa J
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30322007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning assisted sound source localization using two orthogonal first-order differential microphone arrays.
    Liu N; Chen H; Songgong K; Li Y
    J Acoust Soc Am; 2021 Feb; 149(2):1069. PubMed ID: 33639792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sound source localization based on multi-task learning and image translation network.
    Wu Y; Ayyalasomayajula R; Bianco MJ; Bharadia D; Gerstoft P
    J Acoust Soc Am; 2021 Nov; 150(5):3374. PubMed ID: 34852589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of distinct reflections in rooms using spherical microphone array eigenbeam processing.
    Sun H; Mabande E; Kowalczyk K; Kellermann W
    J Acoust Soc Am; 2012 Apr; 131(4):2828-40. PubMed ID: 22501061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sound Source Localization Using a Convolutional Neural Network and Regression Model.
    Tan TH; Lin YT; Chang YL; Alkhaleefah M
    Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Multi-Sound Source Localization Algorithm for Transformer Faults Based on Polyphase Filters.
    Zhou H; Su Z; Huang Y; Lu L; Shen M
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Coherent Wideband Acoustic Source Localization Using a Uniform Circular Array.
    Jiang M; Nnonyelu CJ; Lundgren J; Thungström G; Sjöström M
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Configuration-Invariant Sound Localization Technique Using Azimuth-Frequency Representation and Convolutional Neural Networks.
    Chun C; Jeon KM; Choi W
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32635619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speech Understanding and Sound Source Localization by Cochlear Implant Listeners Using a Pinna-Effect Imitating Microphone and an Adaptive Beamformer.
    Dorman MF; Natale S; Loiselle L
    J Am Acad Audiol; 2018 Mar; 29(3):197-205. PubMed ID: 29488870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blind extraction and localization of sound sources using point sources based approaches.
    Wu SF; Zhu N
    J Acoust Soc Am; 2012 Aug; 132(2):904-17. PubMed ID: 22894213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust acoustic source localization based on modal beamforming and time-frequency processing using circular microphone arrays.
    Torres AM; Cobos M; Pueo B; Lopez JJ
    J Acoust Soc Am; 2012 Sep; 132(3):1511-20. PubMed ID: 22978880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving AoA Localization Accuracy in Wireless Acoustic Sensor Networks with Angular Probability Density Functions.
    Thoen B; Wielandt S; De Strycker L
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30795540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Survey of Sound Source Localization and Detection Methods and Their Applications.
    Jekateryńczuk G; Piotrowski Z
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Room geometry inference based on spherical microphone array eigenbeam processing.
    Mabande E; Kowalczyk K; Sun H; Kellermann W
    J Acoust Soc Am; 2013 Oct; 134(4):2773-89. PubMed ID: 24116416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An adversarial machine learning framework and biomechanical model-guided approach for computing 3D lung tissue elasticity from end-expiration 3DCT.
    Santhanam AP; Stiehl B; Lauria M; Hasse K; Barjaktarevic I; Goldin J; Low DA
    Med Phys; 2021 Feb; 48(2):667-675. PubMed ID: 32449519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noise reduction results of an adaptive filtering technique for dual-microphone behind-the-ear hearing aids.
    Maj JB; Wouters J; Moonen M
    Ear Hear; 2004 Jun; 25(3):215-29. PubMed ID: 15179113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A steered response power approach with trade-off prewhitening for acoustic source localization.
    He H; Wang X; Zhou Y; Yang T
    J Acoust Soc Am; 2018 Feb; 143(2):1003. PubMed ID: 29495698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of directional sound processing and listener's motivation on EEG responses to continuous noisy speech: Do normal-hearing and aided hearing-impaired listeners differ?
    Mirkovic B; Debener S; Schmidt J; Jaeger M; Neher T
    Hear Res; 2019 Jun; 377():260-270. PubMed ID: 31003037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic space learning for sound-source separation and localization on binaural manifolds.
    Deleforge A; Forbes F; Horaud R
    Int J Neural Syst; 2015 Feb; 25(1):1440003. PubMed ID: 25164245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.