These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34241470)

  • 1. Varifocal optical lens using ultrasonic vibration and thixotropic gel.
    Sakata D; Iwase T; Onaka J; Koyama D; Matsukawa M
    J Acoust Soc Am; 2021 Jun; 149(6):3954. PubMed ID: 34241470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Varifocal Concave-Convex Lens Using Viscoelastic Gel and Ultrasound Vibration.
    Hashimoto S; Harada Y; Nakamura K; Iwase T; Onaka J; Matsukawa M; Koyama D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Sep; 69(9):2703-2710. PubMed ID: 35905066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of the Surface Profile of a Thixotropic Fluid With Ultrasound.
    Masuda K; Komatsu H; Koyama D; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jan; 67(1):117-123. PubMed ID: 31449013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid lens using acoustic radiation force.
    Koyama D; Isago R; Nakamura K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):596-602. PubMed ID: 21429850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency characteristics of an ultrasonic varifocal liquid crystal lens.
    Kuroda Y; Harada Y; Emoto A; Matsukawa M; Koyama D
    Appl Opt; 2024 Mar; 63(9):2256-2262. PubMed ID: 38568580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional variable-focus liquid lens using acoustic radiation force.
    Koyama D; Isago R; Nakamura K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2720-6. PubMed ID: 23443707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of an optical lens array using ultraviolet light and ultrasonication.
    Taniguchi S; Koyama D; Nakamura K; Matsukawa M
    Ultrasonics; 2015 Apr; 58():22-6. PubMed ID: 25497498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonic optical lens array with variable focal length and pitch.
    Koyama D; Hatanaka M; Nakamura K; Matsukawa M
    Opt Lett; 2012 Dec; 37(24):5256-8. PubMed ID: 23258070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compact, high-speed variable-focus liquid lens using acoustic radiation force.
    Koyama D; Isago R; Nakamura K
    Opt Express; 2010 Nov; 18(24):25158-69. PubMed ID: 21164862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variable-focus liquid lens based on electrically responsive fluid.
    Xu M; Liu Y; Yuan Y; Lu H; Qiu L
    Opt Lett; 2022 Feb; 47(3):509-512. PubMed ID: 35103661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time Optical Imaging of Microbubble Destruction with an Acoustic Lens Attached Ultrasonic Diagnostic Probe in Microfluidic Capillary Models.
    Oh MT; Kim HN; Ko HS; Lee S; Kim JH; Lee BC
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():6068-6071. PubMed ID: 30441720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ring-Focusing Fresnel Acoustic Lens for Long Depth-of-Focus Focused Ultrasound with Multiple Trapping Zones.
    Tang Y; Kim ES
    J Microelectromech Syst; 2020 Oct; 29(5):692-698. PubMed ID: 33746473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Orientation in a Variable-Focus Liquid Crystal Lens Induced by Ultrasound Vibration.
    Harada Y; Koyama D; Fukui M; Emoto A; Nakamura K; Matsukawa M
    Sci Rep; 2020 Apr; 10(1):6168. PubMed ID: 32277091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple-structured capillary-force-dominated tunable-focus liquid lens based on the higher-order-harmonic resonance of a piezoelectric ring transducer.
    Feng GH; Liu JH
    Appl Opt; 2013 Feb; 52(4):829-37. PubMed ID: 23385925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic liquid crystal tunable light diffuser.
    Kuroda Y; Mizuno R; Koyama D
    Sci Rep; 2024 Jul; 14(1):15445. PubMed ID: 38965408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of deployable fluid lenses and reflectors with endoluminal therapeutic ultrasound applicators: Preliminary investigations of enhanced penetration depth and focal gain.
    Adams MS; Salgaonkar VA; Scott SJ; Sommer G; Diederich CJ
    Med Phys; 2017 Oct; 44(10):5339-5356. PubMed ID: 28681404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Focal position control of ultrasonic transducer made of plano-concave form piezoelectric vibrator.
    Kim J; Kim M
    Ultrasonics; 2022 Apr; 121():106668. PubMed ID: 35016081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new focusing ultrasonic transducer and two foci acoustic lens for acoustic microscopy.
    Maslov KI; Dorozhkin LM; Doroshenko VS; Maev RG
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):380-5. PubMed ID: 18244135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Dynamic Performance of Flexural Ultrasonic Transducers.
    Feeney A; Kang L; Rowlands G; Dixon S
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29346297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Varifocal liquid lens driven by a conical dielectric elastomer actuator.
    Cheng Y; Li Z; Chen C; Cao J; Bao C; Ning Y; Hao Q
    Appl Opt; 2022 May; 61(15):4633-4637. PubMed ID: 36256307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.