These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 34241475)
1. Computational study on aeroacoustic fields of a transitional supersonic jet. Nonomura T; Ozawa Y; Abe Y; Fujii K J Acoust Soc Am; 2021 Jun; 149(6):4484. PubMed ID: 34241475 [TBL] [Abstract][Full Text] [Related]
2. On the axisymmetric stability of heated supersonic round jets. Samanta A Proc Math Phys Eng Sci; 2016 Apr; 472(2188):20150817. PubMed ID: 27274691 [TBL] [Abstract][Full Text] [Related]
3. The effect of turbulence on transitional flow in the FDA's benchmark nozzle model using large-eddy simulation. Manchester EL; Xu XY Int J Numer Method Biomed Eng; 2020 Oct; 36(10):e3389. PubMed ID: 32738822 [TBL] [Abstract][Full Text] [Related]
5. Characteristics of the Supersonic Combustion Coherent Jet for Electric Arc Furnace Steelmaking. Zhao F; Zhu R; Wang W Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31731513 [TBL] [Abstract][Full Text] [Related]
6. Implicit Subgrid-Scale Modeling of a Mach 2.5 Spatially Developing Turbulent Boundary Layer. Araya G; Lagares C Entropy (Basel); 2022 Apr; 24(4):. PubMed ID: 35455218 [TBL] [Abstract][Full Text] [Related]
7. A novel self-seeding method for particle image velocimetry measurements of subsonic and supersonic flows. Nematollahi O; Samsam-Khayani H; Nili-Ahmadabadi M; Yoon SY; Kim KC Sci Rep; 2020 Jul; 10(1):10834. PubMed ID: 32616771 [TBL] [Abstract][Full Text] [Related]
8. Noise prediction of a subsonic turbulent round jet using the lattice-Boltzmann method. Lew PT; Mongeau L; Lyrintzis A J Acoust Soc Am; 2010 Sep; 128(3):1118-27. PubMed ID: 20815448 [TBL] [Abstract][Full Text] [Related]
9. Source characterization of a subsonic jet by using near-field acoustical holography. Lee M; Bolton JS J Acoust Soc Am; 2007 Feb; 121(2):967-77. PubMed ID: 17348520 [TBL] [Abstract][Full Text] [Related]
10. Raman temperature and density measurements in supersonic jets. Wernet MP; Georgiadis NJ; Locke RJ Exp Fluids; 2021; 62(3):61. PubMed ID: 33814684 [TBL] [Abstract][Full Text] [Related]
11. Azimuthal decomposition of the radiated noise from supersonic shock-containing jets. Wong MH; Kirby R; Jordan P; Edgington-Mitchell D J Acoust Soc Am; 2020 Oct; 148(4):2015. PubMed ID: 33138540 [TBL] [Abstract][Full Text] [Related]
12. Nonlinear eddy viscosity modeling and experimental study of jet spreading rates. Heschl C; Inthavong K; Sanz W; Tu J Indoor Air; 2014 Feb; 24(1):93-102. PubMed ID: 23668473 [TBL] [Abstract][Full Text] [Related]
13. Computational and Experimental Investigation of Biofilm Disruption Dynamics Induced by High-Velocity Gas Jet Impingement. Prades L; Fabbri S; Dorado AD; Gamisans X; Stoodley P; Picioreanu C mBio; 2020 Jan; 11(1):. PubMed ID: 31911489 [TBL] [Abstract][Full Text] [Related]
14. Experimental study on effects of plate angle on acoustic waves from supersonic impinging jets. Akamine M; Okamoto K; Teramoto S; Tsutsumi S J Acoust Soc Am; 2021 Sep; 150(3):1856. PubMed ID: 34598594 [TBL] [Abstract][Full Text] [Related]
15. Experimental investigation of jet-induced wall pressure fluctuations over a tangential flat plate at two Reynolds numbers. Meloni S; Di Marco A; Mancinelli M; Camussi R Sci Rep; 2020 Jun; 10(1):9140. PubMed ID: 32499595 [TBL] [Abstract][Full Text] [Related]
16. The connection between sound production and jet structure of the supersonic impinging jet. Henderson B J Acoust Soc Am; 2002 Feb; 111(2):735-47. PubMed ID: 11863175 [TBL] [Abstract][Full Text] [Related]
17. Real-time supersonic jet noise predictions from near-field sensors with a wavepacket model. Kleine VG; Sasaki K; Cavalieri AVG; Brès GA; Colonius T J Acoust Soc Am; 2021 Dec; 150(6):4297. PubMed ID: 34972286 [TBL] [Abstract][Full Text] [Related]
18. Sound power and acoustic efficiency of an installed GE F404 jet engine. Christian MA; Gee KL; Streeter JB; Wall AT; Campbell SC JASA Express Lett; 2023 Jul; 3(7):. PubMed ID: 37404164 [TBL] [Abstract][Full Text] [Related]
19. Seedless velocimetry at 100 kHz with picosecond-laser electronic-excitation tagging. Jiang N; Mance JG; Slipchenko MN; Felver JJ; Stauffer HU; Yi T; Danehy PM; Roy S Opt Lett; 2017 Jan; 42(2):239-242. PubMed ID: 28081082 [TBL] [Abstract][Full Text] [Related]
20. Comparison of LES of steady transitional flow in an idealized stenosed axisymmetric artery model with a RANS transitional model. Tan FP; Wood NB; Tabor G; Xu XY J Biomech Eng; 2011 May; 133(5):051001. PubMed ID: 21599092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]