These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34241481)

  • 1. An effectively causal deep learning algorithm to increase intelligibility in untrained noises for hearing-impaired listeners.
    Healy EW; Tan K; Johnson EM; Wang D
    J Acoust Soc Am; 2021 Jun; 149(6):3943. PubMed ID: 34241481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale training to increase speech intelligibility for hearing-impaired listeners in novel noises.
    Chen J; Wang Y; Yoho SE; Wang D; Healy EW
    J Acoust Soc Am; 2016 May; 139(5):2604. PubMed ID: 27250154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress made in the efficacy and viability of deep-learning-based noise reduction.
    Healy EW; Johnson EM; Pandey A; Wang D
    J Acoust Soc Am; 2023 May; 153(5):2751. PubMed ID: 37133814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A deep learning algorithm to increase intelligibility for hearing-impaired listeners in the presence of a competing talker and reverberation.
    Healy EW; Delfarah M; Johnson EM; Wang D
    J Acoust Soc Am; 2019 Mar; 145(3):1378. PubMed ID: 31067936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep learning based segregation algorithm to increase speech intelligibility for hearing-impaired listeners in reverberant-noisy conditions.
    Zhao Y; Wang D; Johnson EM; Healy EW
    J Acoust Soc Am; 2018 Sep; 144(3):1627. PubMed ID: 30424625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A talker-independent deep learning algorithm to increase intelligibility for hearing-impaired listeners in reverberant competing talker conditions.
    Healy EW; Johnson EM; Delfarah M; Wang D
    J Acoust Soc Am; 2020 Jun; 147(6):4106. PubMed ID: 32611178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the sparse coding shrinkage noise reduction algorithm in normal hearing and hearing impaired listeners.
    Sang J; Hu H; Zheng C; Li G; Lutman ME; Bleeck S
    Hear Res; 2014 Apr; 310():36-47. PubMed ID: 24495441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Restoring speech intelligibility for hearing aid users with deep learning.
    Diehl PU; Singer Y; Zilly H; Schönfeld U; Meyer-Rachner P; Berry M; Sprekeler H; Sprengel E; Pudszuhn A; Hofmann VM
    Sci Rep; 2023 Feb; 13(1):2719. PubMed ID: 36792797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A causal and talker-independent speaker separation/dereverberation deep learning algorithm: Cost associated with conversion to real-time capable operation.
    Healy EW; Taherian H; Johnson EM; Wang D
    J Acoust Soc Am; 2021 Nov; 150(5):3976. PubMed ID: 34852625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An algorithm to increase intelligibility for hearing-impaired listeners in the presence of a competing talker.
    Healy EW; Delfarah M; Vasko JL; Carter BL; Wang D
    J Acoust Soc Am; 2017 Jun; 141(6):4230. PubMed ID: 28618817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An algorithm to improve speech recognition in noise for hearing-impaired listeners.
    Healy EW; Yoho SE; Wang Y; Wang D
    J Acoust Soc Am; 2013 Oct; 134(4):3029-38. PubMed ID: 24116438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing Binaural Pre-processing Strategies III: Speech Intelligibility of Normal-Hearing and Hearing-Impaired Listeners.
    Völker C; Warzybok A; Ernst SM
    Trends Hear; 2015 Dec; 19():. PubMed ID: 26721922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory inspired machine learning techniques can improve speech intelligibility and quality for hearing-impaired listeners.
    Monaghan JJ; Goehring T; Yang X; Bolner F; Wang S; Wright MC; Bleeck S
    J Acoust Soc Am; 2017 Mar; 141(3):1985. PubMed ID: 28372043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient two-microphone speech enhancement using basic recurrent neural network cell for hearing and hearing aids.
    Shankar N; Bhat GS; Panahi IMS
    J Acoust Soc Am; 2020 Jul; 148(1):389. PubMed ID: 32752751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of noise reduction on speech intelligibility, perceived listening effort, and personal preference in hearing-impaired listeners.
    Brons I; Houben R; Dreschler WA
    Trends Hear; 2014 Oct; 18():. PubMed ID: 25315377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An algorithm to increase speech intelligibility for hearing-impaired listeners in novel segments of the same noise type.
    Healy EW; Yoho SE; Chen J; Wang Y; Wang D
    J Acoust Soc Am; 2015 Sep; 138(3):1660-9. PubMed ID: 26428803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speech quality evaluation of a sparse coding shrinkage noise reduction algorithm with normal hearing and hearing impaired listeners.
    Sang J; Hu H; Zheng C; Li G; Lutman ME; Bleeck S
    Hear Res; 2015 Sep; 327():175-85. PubMed ID: 26232529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Directional Microphone and Noise Reduction on Subcortical and Cortical Auditory-Evoked Potentials in Older Listeners With Hearing Loss.
    Slugocki C; Kuk F; Korhonen P
    Ear Hear; 2020; 41(5):1282-1293. PubMed ID: 32058351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Audiovisual asynchrony detection and speech intelligibility in noise with moderate to severe sensorineural hearing impairment.
    Başkent D; Bazo D
    Ear Hear; 2011; 32(5):582-92. PubMed ID: 21389856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of a Deep Recurrent Neural Network to Reduce Wind Noise: Effects on Judged Speech Intelligibility and Sound Quality.
    Keshavarzi M; Goehring T; Zakis J; Turner RE; Moore BCJ
    Trends Hear; 2018; 22():2331216518770964. PubMed ID: 29708061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.