BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34241601)

  • 1. Enhanced crystallisation kinetics of edible lipids through the action of a bifurcated streamer.
    Youngs JJ; Birkin PR; Lee J; Truscott TT; Martini S
    Analyst; 2021 Aug; 146(15):4883-4894. PubMed ID: 34241601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cavitation clusters in lipid systems - Ring-up, bubble population, and bifurcated streamer lifetime.
    Birkin PR; Youngs JJ; Truscott TT; Martini S
    Ultrason Sonochem; 2020 Oct; 67():105168. PubMed ID: 32482437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modifying the physical properties of butter using high-intensity ultrasound.
    Lee J; Martini S
    J Dairy Sci; 2019 Mar; 102(3):1918-1926. PubMed ID: 30639025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of storage time on physical properties of sonocrystallized all-purpose shortening.
    Lee J; Marsh M; Martini S
    J Food Sci; 2020 Oct; 85(10):3391-3399. PubMed ID: 32920877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Intensity Ultrasound to Improve Physical and Functional Properties of Lipids.
    Wagh A; Birkin P; Martini S
    Annu Rev Food Sci Technol; 2016; 7():23-41. PubMed ID: 26735795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sonocrystallization of Interesterified Soybean Oil: Effect of Saturation Level and Supercooling.
    Lee J; Claro da Silva R; Gibon V; Martini S
    J Food Sci; 2018 Apr; 83(4):902-910. PubMed ID: 29476626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altering functional properties of fats using power ultrasound.
    Suzuki AH; Lee J; Padilla SG; Martini S
    J Food Sci; 2010 May; 75(4):E208-14. PubMed ID: 20546401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sonocrystallization as a tool to reduce oil migration by changing physical properties of a palm kernel fat.
    da Silva TLT; Marsh M; Gibon V; Martini S
    J Food Sci; 2020 Apr; 85(4):964-971. PubMed ID: 32222051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical Properties of Monoglycerides Oleogels Modified by Concentration, Cooling Rate, and High-Intensity Ultrasound.
    Giacomozzi AS; Palla CA; Carrín ME; Martini S
    J Food Sci; 2019 Sep; 84(9):2549-2561. PubMed ID: 31433063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasound treatment of crystalline oil-in-water emulsions stabilized by sodium caseinate: Impact on emulsion stability through altered crystallization behavior in the oil globules.
    Song Y; Xiao J; Li L; Wan L; Li B; Zhang X
    Ultrason Sonochem; 2024 Jun; 106():106897. PubMed ID: 38735250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of high-intensity ultrasound and cooling rate on the crystallization behavior of beeswax in edible oils.
    Jana S; Martini S
    J Agric Food Chem; 2014 Oct; 62(41):10192-202. PubMed ID: 25265535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of sonication, temperature, and agitation, on the physical properties of a palm-based fat crystallized in a continuous system.
    da Silva TLT; Danthine S; Martini S
    Ultrason Sonochem; 2021 Jun; 74():105550. PubMed ID: 33883101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of ultrasonic intensity on the crystal structure of palm oil.
    Patrick M; Blindt R; Janssen J
    Ultrason Sonochem; 2004 May; 11(3-4):251-5. PubMed ID: 15081990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the mechanisms of enhanced crystallisation of APS in the presence of ultrasound.
    Birkin PR; Youngs JJ; Truscott TT; Martini S
    Phys Chem Chem Phys; 2022 May; 24(19):11552-11561. PubMed ID: 35506755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of processing conditions as high-intensity ultrasound, agitation, and cooling temperature on the physical properties of a low saturated fat.
    da Silva TLT; Danthine S; Martini S
    J Food Sci; 2020 Oct; 85(10):3380-3390. PubMed ID: 32918309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of high-intensity ultrasound to palm oil in a continuous system.
    Ye Y; Martini S
    J Agric Food Chem; 2015 Jan; 63(1):319-27. PubMed ID: 25516404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using high intensity ultrasound as a tool to change the functional properties of interesterified soybean oil.
    Ye Y; Wagh A; Martini S
    J Agric Food Chem; 2011 Oct; 59(19):10712-22. PubMed ID: 21894926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring physical properties of monoglycerides oleogels using high-intensity ultrasound.
    Giacomozzi A; Palla C; Carrín ME; Martini S
    Food Res Int; 2020 Aug; 134():109231. PubMed ID: 32517895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physicochemical properties of tilapia (Oreochromis niloticus) actomyosin subjected to high intensity ultrasound in low NaCl concentrations.
    Tang L; Yongsawatdigul J
    Ultrason Sonochem; 2020 May; 63():104922. PubMed ID: 31945574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cavitation clusters in lipid systems - surface effects, local heating and streamer formation.
    Birkin PR; Foley TM; Truscott TT; Merritt A; Martini S
    Phys Chem Chem Phys; 2017 Mar; 19(9):6785-6791. PubMed ID: 28217786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.