BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34241683)

  • 1. Metal-ion promiscuity of microbial enzyme DapE at its second metal-binding site.
    Paul A; Mishra S
    J Biol Inorg Chem; 2021 Aug; 26(5):569-582. PubMed ID: 34241683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deciphering the role of the two metal-binding sites of DapE enzyme via metal substitution.
    Paul A; Mishra S
    Comput Biol Chem; 2023 Apr; 103():107832. PubMed ID: 36805170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate specificity, metal binding properties, and spectroscopic characterization of the DapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase from Haemophilus influenzae.
    Bienvenue DL; Gilner DM; Davis RS; Bennett B; Holz RC
    Biochemistry; 2003 Sep; 42(36):10756-63. PubMed ID: 12962500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase from Haemophilus influenzae contains two active-site histidine residues.
    Gillner DM; Bienvenue DL; Nocek BP; Joachimiak A; Zachary V; Bennett B; Holz RC
    J Biol Inorg Chem; 2009 Jan; 14(1):1-10. PubMed ID: 18712420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structural and energetic aspects of substrate binding and the mechanism of action of the DapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) investigated using a hybrid QM/MM method.
    Dutta D; Mishra S
    Phys Chem Chem Phys; 2014 Dec; 16(47):26348-58. PubMed ID: 25367594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic and spectroscopic characterization of the E134A- and E134D-altered dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase from Haemophilus influenzae.
    Davis R; Bienvenue D; Swierczek SI; Gilner DM; Rajagopal L; Bennett B; Holz RC
    J Biol Inorg Chem; 2006 Mar; 11(2):206-16. PubMed ID: 16421726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The three-dimensional structure of DapE from Enterococcus faecium reveals new insights into DapE/ArgE subfamily ligand specificity.
    Terrazas-López M; González-Segura L; Díaz-Vilchis A; Aguirre-Mendez KA; Lobo-Galo N; Martínez-Martínez A; Díaz-Sánchez ÁG
    Int J Biol Macromol; 2024 Jun; 270(Pt 2):132281. PubMed ID: 38740150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of Catalytic Activity in the E134D, H67A, and H349A Mutants of DapE: Mechanistic Analysis with QM/MM Investigation.
    Dutta D; Mishra S
    J Phys Chem B; 2016 Nov; 120(45):11654-11664. PubMed ID: 27783518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Evidence of a Major Conformational Change Triggered by Substrate Binding in DapE Enzymes: Impact on the Catalytic Mechanism.
    Nocek B; Reidl C; Starus A; Heath T; Bienvenue D; Osipiuk J; Jedrzejczak R; Joachimiak A; Becker DP; Holz RC
    Biochemistry; 2018 Feb; 57(5):574-584. PubMed ID: 29272107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. L-Captopril and its derivatives as potential inhibitors of microbial enzyme DapE: A combined approach of drug repurposing and similarity screening.
    Dutta D; Mishra S
    J Mol Graph Model; 2018 Sep; 84():82-89. PubMed ID: 29936366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promiscuity comes at a price: catalytic versatility vs efficiency in different metal ion derivatives of the potential bioremediator GpdQ.
    Daumann LJ; McCarthy BY; Hadler KS; Murray TP; Gahan LR; Larrabee JA; Ollis DL; Schenk G
    Biochim Biophys Acta; 2013 Jan; 1834(1):425-32. PubMed ID: 22366468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for catalysis by the mono- and dimetalated forms of the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase.
    Nocek BP; Gillner DM; Fan Y; Holz RC; Joachimiak A
    J Mol Biol; 2010 Apr; 397(3):617-26. PubMed ID: 20138056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase from Haemophilus influenzae is a dinuclear metallohydrolase.
    Cosper NJ; Bienvenue DL; Shokes JE; Gilner DM; Tsukamoto T; Scott RA; Holz RC
    J Am Chem Soc; 2003 Dec; 125(48):14654-5. PubMed ID: 14640610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zinc-selective inhibition of the promiscuous bacterial amide-hydrolase DapE: implications of metal heterogeneity for evolution and antibiotic drug design.
    Uda NR; Upert G; Angelici G; Nicolet S; Schmidt T; Schwede T; Creus M
    Metallomics; 2014 Jan; 6(1):88-95. PubMed ID: 24057071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DapE can function as an aspartyl peptidase in the presence of Mn2+.
    Broder DH; Miller CG
    J Bacteriol; 2003 Aug; 185(16):4748-54. PubMed ID: 12896993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dimerization domain in DapE enzymes is required for catalysis.
    Nocek B; Starus A; Makowska-Grzyska M; Gutierrez B; Sanchez S; Jedrzejczak R; Mack JC; Olsen KW; Joachimiak A; Holz RC
    PLoS One; 2014; 9(5):e93593. PubMed ID: 24806882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and biochemical analysis of the metallo-β-lactamase L1 from emerging pathogen Stenotrophomonas maltophilia revealed the subtle but distinct di-metal scaffold for catalytic activity.
    Kim Y; Maltseva N; Wilamowski M; Tesar C; Endres M; Joachimiak A
    Protein Sci; 2020 Mar; 29(3):723-743. PubMed ID: 31846104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active Site Dynamics in Substrate Hydrolysis Catalyzed by DapE Enzyme and Its Mutants from Hybrid QM/MM-Molecular Dynamics Simulation.
    Dutta D; Mishra S
    J Phys Chem B; 2017 Jul; 121(29):7075-7085. PubMed ID: 28664734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of N-succinyl-diaminopimelate desuccinylase with flavonoids.
    Terrazas-López M; Lobo-Galo N; Aguirre-Reyes LG; Cuen-Andrade JL; de la Rosa LA; Alvarez-Parrilla E; Martínez-Martínez A; Díaz-Sánchez ÁG
    Biochimie; 2020 Oct; 177():198-212. PubMed ID: 32860896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The functional role of the binuclear metal center in D-aminoacylase: one-metal activation and second-metal attenuation.
    Lai WL; Chou LY; Ting CY; Kirby R; Tsai YC; Wang AH; Liaw SH
    J Biol Chem; 2004 Apr; 279(14):13962-7. PubMed ID: 14736882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.