These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 34241683)

  • 1. Metal-ion promiscuity of microbial enzyme DapE at its second metal-binding site.
    Paul A; Mishra S
    J Biol Inorg Chem; 2021 Aug; 26(5):569-582. PubMed ID: 34241683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deciphering the role of the two metal-binding sites of DapE enzyme via metal substitution.
    Paul A; Mishra S
    Comput Biol Chem; 2023 Apr; 103():107832. PubMed ID: 36805170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate specificity, metal binding properties, and spectroscopic characterization of the DapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase from Haemophilus influenzae.
    Bienvenue DL; Gilner DM; Davis RS; Bennett B; Holz RC
    Biochemistry; 2003 Sep; 42(36):10756-63. PubMed ID: 12962500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase from Haemophilus influenzae contains two active-site histidine residues.
    Gillner DM; Bienvenue DL; Nocek BP; Joachimiak A; Zachary V; Bennett B; Holz RC
    J Biol Inorg Chem; 2009 Jan; 14(1):1-10. PubMed ID: 18712420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structural and energetic aspects of substrate binding and the mechanism of action of the DapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) investigated using a hybrid QM/MM method.
    Dutta D; Mishra S
    Phys Chem Chem Phys; 2014 Dec; 16(47):26348-58. PubMed ID: 25367594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic and spectroscopic characterization of the E134A- and E134D-altered dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase from Haemophilus influenzae.
    Davis R; Bienvenue D; Swierczek SI; Gilner DM; Rajagopal L; Bennett B; Holz RC
    J Biol Inorg Chem; 2006 Mar; 11(2):206-16. PubMed ID: 16421726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The three-dimensional structure of DapE from Enterococcus faecium reveals new insights into DapE/ArgE subfamily ligand specificity.
    Terrazas-López M; González-Segura L; Díaz-Vilchis A; Aguirre-Mendez KA; Lobo-Galo N; Martínez-Martínez A; Díaz-Sánchez ÁG
    Int J Biol Macromol; 2024 Jun; 270(Pt 2):132281. PubMed ID: 38740150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of Catalytic Activity in the E134D, H67A, and H349A Mutants of DapE: Mechanistic Analysis with QM/MM Investigation.
    Dutta D; Mishra S
    J Phys Chem B; 2016 Nov; 120(45):11654-11664. PubMed ID: 27783518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Evidence of a Major Conformational Change Triggered by Substrate Binding in DapE Enzymes: Impact on the Catalytic Mechanism.
    Nocek B; Reidl C; Starus A; Heath T; Bienvenue D; Osipiuk J; Jedrzejczak R; Joachimiak A; Becker DP; Holz RC
    Biochemistry; 2018 Feb; 57(5):574-584. PubMed ID: 29272107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. L-Captopril and its derivatives as potential inhibitors of microbial enzyme DapE: A combined approach of drug repurposing and similarity screening.
    Dutta D; Mishra S
    J Mol Graph Model; 2018 Sep; 84():82-89. PubMed ID: 29936366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promiscuity comes at a price: catalytic versatility vs efficiency in different metal ion derivatives of the potential bioremediator GpdQ.
    Daumann LJ; McCarthy BY; Hadler KS; Murray TP; Gahan LR; Larrabee JA; Ollis DL; Schenk G
    Biochim Biophys Acta; 2013 Jan; 1834(1):425-32. PubMed ID: 22366468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for catalysis by the mono- and dimetalated forms of the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase.
    Nocek BP; Gillner DM; Fan Y; Holz RC; Joachimiak A
    J Mol Biol; 2010 Apr; 397(3):617-26. PubMed ID: 20138056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase from Haemophilus influenzae is a dinuclear metallohydrolase.
    Cosper NJ; Bienvenue DL; Shokes JE; Gilner DM; Tsukamoto T; Scott RA; Holz RC
    J Am Chem Soc; 2003 Dec; 125(48):14654-5. PubMed ID: 14640610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zinc-selective inhibition of the promiscuous bacterial amide-hydrolase DapE: implications of metal heterogeneity for evolution and antibiotic drug design.
    Uda NR; Upert G; Angelici G; Nicolet S; Schmidt T; Schwede T; Creus M
    Metallomics; 2014 Jan; 6(1):88-95. PubMed ID: 24057071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DapE can function as an aspartyl peptidase in the presence of Mn2+.
    Broder DH; Miller CG
    J Bacteriol; 2003 Aug; 185(16):4748-54. PubMed ID: 12896993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dimerization domain in DapE enzymes is required for catalysis.
    Nocek B; Starus A; Makowska-Grzyska M; Gutierrez B; Sanchez S; Jedrzejczak R; Mack JC; Olsen KW; Joachimiak A; Holz RC
    PLoS One; 2014; 9(5):e93593. PubMed ID: 24806882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and biochemical analysis of the metallo-β-lactamase L1 from emerging pathogen Stenotrophomonas maltophilia revealed the subtle but distinct di-metal scaffold for catalytic activity.
    Kim Y; Maltseva N; Wilamowski M; Tesar C; Endres M; Joachimiak A
    Protein Sci; 2020 Mar; 29(3):723-743. PubMed ID: 31846104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active Site Dynamics in Substrate Hydrolysis Catalyzed by DapE Enzyme and Its Mutants from Hybrid QM/MM-Molecular Dynamics Simulation.
    Dutta D; Mishra S
    J Phys Chem B; 2017 Jul; 121(29):7075-7085. PubMed ID: 28664734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of N-succinyl-diaminopimelate desuccinylase with flavonoids.
    Terrazas-López M; Lobo-Galo N; Aguirre-Reyes LG; Cuen-Andrade JL; de la Rosa LA; Alvarez-Parrilla E; Martínez-Martínez A; Díaz-Sánchez ÁG
    Biochimie; 2020 Oct; 177():198-212. PubMed ID: 32860896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The functional role of the binuclear metal center in D-aminoacylase: one-metal activation and second-metal attenuation.
    Lai WL; Chou LY; Ting CY; Kirby R; Tsai YC; Wang AH; Liaw SH
    J Biol Chem; 2004 Apr; 279(14):13962-7. PubMed ID: 14736882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.