BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 34241736)

  • 1. Conformal Fabrication of an Electrospun Nanofiber Mat on a 3D Ear Cartilage-Shaped Hydrogel Collector Based on Hydrogel-Assisted Electrospinning.
    Song JY; Ryu HI; Lee JM; Bae SH; Lee JW; Yi CC; Park SM
    Nanoscale Res Lett; 2021 Jul; 16(1):116. PubMed ID: 34241736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogel-Assisted Electrospinning for Fabrication of a 3D Complex Tailored Nanofiber Macrostructure.
    Eom S; Park SM; Hong H; Kwon J; Oh SR; Kim J; Kim DS
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51212-51224. PubMed ID: 33153261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uniform-thickness electrospun nanofiber mat production system based on real-time thickness measurement.
    Ryu HI; Koo MS; Kim S; Kim S; Park YA; Park SM
    Sci Rep; 2020 Nov; 10(1):20847. PubMed ID: 33257811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication Procedure for a 3D Hollow Nanofibrous Bifurcated-Tubular Scaffold by Conformal Electrospinning.
    Song JY; Lee HS; Kim DY; Yun HJ; Yi CC; Park SM
    ACS Macro Lett; 2023 May; 12(5):659-666. PubMed ID: 37155320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of electrospun nanofibers with desired microstructures using a programmed three-dimensional (3D) nanofiber collector.
    Chen L; Al-Shawk A; Rea C; Mazeh H; Wu X; Chen W; Li Y; Song W; Markel DC; Ren W
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110188. PubMed ID: 31753331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Grounded Liquid Collectors in Precise Patterning of Electrospun Nanofiber Mats.
    Park SM; Eom S; Kim W; Kim DS
    Langmuir; 2018 Jan; 34(1):284-290. PubMed ID: 29215895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilization of Electrospun Nanofiber Mats Used for Filters by 3D Printing.
    Kozior T; Trabelsi M; Mamun A; Sabantina L; Ehrmann A
    Polymers (Basel); 2019 Oct; 11(10):. PubMed ID: 31590455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Musculoskeletal Tissue Engineering Using Fibrous Biomaterials.
    Tan G; Zhou Y; Sooriyaarachchi D
    Methods Mol Biol; 2021; 2193():31-40. PubMed ID: 32808256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrospinning on 3D Printed Polymers for Mechanically Stabilized Filter Composites.
    Kozior T; Mamun A; Trabelsi M; Wortmann M; Lilia S; Ehrmann A
    Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31818001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine.
    Chen S; Li R; Li X; Xie J
    Adv Drug Deliv Rev; 2018 Jul; 132():188-213. PubMed ID: 29729295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D electrospun silk fibroin nanofibers for fabrication of artificial skin.
    Sheikh FA; Ju HW; Lee JM; Moon BM; Park HJ; Lee OJ; Kim JH; Kim DK; Park CH
    Nanomedicine; 2015 Apr; 11(3):681-91. PubMed ID: 25555351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable 3D Nanofiber Architecture of Polycaprolactone by Divergence Electrospinning for Potential Tissue Engineering Applications.
    Tan GZ; Zhou Y
    Nanomicro Lett; 2018; 10(4):73. PubMed ID: 30417005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct-Write, Self-Aligned Electrospinning on Paper for Controllable Fabrication of Three-Dimensional Structures.
    Luo G; Teh KS; Liu Y; Zang X; Wen Z; Lin L
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27765-70. PubMed ID: 26592741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun 3D Structured Carbon Current Collector for Li/S Batteries.
    Kalybekkyzy S; Mentbayeva A; Yerkinbekova Y; Baikalov N; Kahraman MV; Bakenov Z
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32295192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospinning of polymer nanofibers with ordered patterns and architectures.
    Wang Y; Li H; Wang G; Yin T; Wang B; Yu Q
    J Nanosci Nanotechnol; 2010 Mar; 10(3):1699-706. PubMed ID: 20355560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uniform field electrospinning for 3D printing of fibrous configurations as strain sensors.
    Liu Q; Wu Q; Xie S; Zhao L; Chen Z; Ding Z; Li X
    Nanotechnology; 2019 Sep; 30(37):375301. PubMed ID: 31195376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced fabrication for electrospun three-dimensional nanofiber aerogels and scaffolds.
    Chen Y; Shafiq M; Liu M; Morsi Y; Mo X
    Bioact Mater; 2020 Dec; 5(4):963-979. PubMed ID: 32671291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wet electrospun alginate/gelatin hydrogel nanofibers for 3D cell culture.
    Majidi SS; Slemming-Adamsen P; Hanif M; Zhang Z; Wang Z; Chen M
    Int J Biol Macromol; 2018 Oct; 118(Pt B):1648-1654. PubMed ID: 29981331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of bi-layer scaffold of keratin nanofiber and gelatin-methacrylate hydrogel: Implications for skin graft.
    Kim JW; Kim MJ; Ki CS; Kim HJ; Park YH
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):541-548. PubMed ID: 28711618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional endothelial cell incorporation within bioactive nanofibrous scaffolds through concurrent emulsion electrospinning and coaxial cell electrospraying.
    Zhao Q; Zhou Y; Wang M
    Acta Biomater; 2021 Mar; 123():312-324. PubMed ID: 33508508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.