These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 34242017)
1. Engineering Electromagnetic Hot-Spots in Nanoparticle Cluster Arrays on Reflective Substrates for Highly Sensitive Detection of (Bio)molecular Analytes. Rastogi R; Dogbe Foli EA; Vincent R; Adam PM; Krishnamoorthy S ACS Appl Mater Interfaces; 2021 Jul; 13(28):32653-32661. PubMed ID: 34242017 [TBL] [Abstract][Full Text] [Related]
2. Analyte Co-localization at Electromagnetic Gap Hot-Spots for Highly Sensitive (Bio)molecular Detection by Plasmon Enhanced Spectroscopies. Rastogi R; Arianfard H; Moss D; Juodkazis S; Adam PM; Krishnamoorthy S ACS Appl Mater Interfaces; 2021 Feb; 13(7):9113-9121. PubMed ID: 33583180 [TBL] [Abstract][Full Text] [Related]
3. Bimetallic gold-silver nanoplate array as a highly active SERS substrate for detection of streptavidin/biotin assemblies. Bi L; Dong J; Xie W; Lu W; Tong W; Tao L; Qian W Anal Chim Acta; 2013 Dec; 805():95-100. PubMed ID: 24296148 [TBL] [Abstract][Full Text] [Related]
4. Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced Raman spectroscopy. Ou FS; Hu M; Naumov I; Kim A; Wu W; Bratkovsky AM; Li X; Williams RS; Li Z Nano Lett; 2011 Jun; 11(6):2538-42. PubMed ID: 21604751 [TBL] [Abstract][Full Text] [Related]
5. Template-Confined Site-Specific Electrodeposition of Nanoparticle Cluster-in-Bowl Arrays as Surface Enhanced Raman Spectroscopy Substrates. Wang Y; Yu Y; Liu Y; Yang S ACS Sens; 2018 Nov; 3(11):2343-2350. PubMed ID: 30350595 [TBL] [Abstract][Full Text] [Related]
6. Hierarchic Interfacial Nanocube Assembly for Sensitive, Selective, and Quantitative DNA Detection with Surface-Enhanced Raman Scattering. Kim M; Ko SM; Lee C; Son J; Kim J; Kim JM; Nam JM Anal Chem; 2019 Aug; 91(16):10467-10476. PubMed ID: 31265240 [TBL] [Abstract][Full Text] [Related]
7. Optoplasmonic Hybrid Materials for Trace Detection of Methamphetamine in Biological Fluids through SERS. Hong Y; Zhou X; Xu B; Huang Y; He W; Wang S; Wang C; Zhou G; Chen Y; Gong T ACS Appl Mater Interfaces; 2020 May; 12(21):24192-24200. PubMed ID: 32351116 [TBL] [Abstract][Full Text] [Related]
9. Highly sensitive SERS substrates with multi-hot spots for on-site detection of pesticide residues. Xie T; Cao Z; Li Y; Li Z; Zhang FL; Gu Y; Han C; Yang G; Qu L Food Chem; 2022 Jul; 381():132208. PubMed ID: 35123223 [TBL] [Abstract][Full Text] [Related]
10. Surface-enhanced Raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures. Pilo-Pais M; Watson A; Demers S; LaBean TH; Finkelstein G Nano Lett; 2014; 14(4):2099-104. PubMed ID: 24645937 [TBL] [Abstract][Full Text] [Related]
11. Ag-Nanoparticles@Bacterial Nanocellulose as a 3D Flexible and Robust Surface-Enhanced Raman Scattering Substrate. Huo D; Chen B; Meng G; Huang Z; Li M; Lei Y ACS Appl Mater Interfaces; 2020 Nov; 12(45):50713-50720. PubMed ID: 33112614 [TBL] [Abstract][Full Text] [Related]
12. Pushing the surface-enhanced Raman scattering analyses sensitivity by magnetic concentration: a simple non core-shell approach. Toma SH; Santos JJ; Araki K; Toma HE Anal Chim Acta; 2015 Jan; 855():70-5. PubMed ID: 25542091 [TBL] [Abstract][Full Text] [Related]
13. All-Hot-Spot Bulk Surface-Enhanced Raman Scattering (SERS) Substrates: Attomolar Detection of Adsorbates with Designer Plasmonic Nanoparticles. Zhao Q; Hilal H; Kim J; Park W; Haddadnezhad M; Lee J; Park W; Lee JW; Lee S; Jung I; Park S J Am Chem Soc; 2022 Jul; 144(29):13285-13293. PubMed ID: 35839479 [TBL] [Abstract][Full Text] [Related]
14. Three-dimensional (3D) plasmonic hot spots for label-free sensing and effective photothermal killing of multiple drug resistant superbugs. Jones S; Sinha SS; Pramanik A; Ray PC Nanoscale; 2016 Nov; 8(43):18301-18308. PubMed ID: 27714099 [TBL] [Abstract][Full Text] [Related]
15. Sensitive and label-free quantification of cellular biothiols by competitive surface-enhanced Raman spectroscopy. Zhao J; Zhang K; Ji J; Liu B Talanta; 2016 May; 152():196-202. PubMed ID: 26992511 [TBL] [Abstract][Full Text] [Related]
16. Surface-Enhanced Raman Spectroscopy on Liquid Interfacial Nanoparticle Arrays for Multiplex Detecting Drugs in Urine. Ma Y; Liu H; Mao M; Meng J; Yang L; Liu J Anal Chem; 2016 Aug; 88(16):8145-51. PubMed ID: 27401135 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection. Hu Y; Liao J; Wang D; Li G Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316 [TBL] [Abstract][Full Text] [Related]
18. Self-orienting nanocubes for the assembly of plasmonic nanojunctions. Gao B; Arya G; Tao AR Nat Nanotechnol; 2012 Jun; 7(7):433-7. PubMed ID: 22683842 [TBL] [Abstract][Full Text] [Related]
19. Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement. Zhang L; Lang X; Hirata A; Chen M ACS Nano; 2011 Jun; 5(6):4407-13. PubMed ID: 21627303 [TBL] [Abstract][Full Text] [Related]
20. Interfacial self-assembled functional nanoparticle array: a facile surface-enhanced Raman scattering sensor for specific detection of trace analytes. Zhang K; Ji J; Li Y; Liu B Anal Chem; 2014 Jul; 86(13):6660-5. PubMed ID: 24915488 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]