These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 34242017)
21. Sensitive surface-enhanced Raman spectroscopy (SERS) detection of organochlorine pesticides by alkyl dithiol-functionalized metal nanoparticles-induced plasmonic hot spots. Kubackova J; Fabriciova G; Miskovsky P; Jancura D; Sanchez-Cortes S Anal Chem; 2015 Jan; 87(1):663-9. PubMed ID: 25494815 [TBL] [Abstract][Full Text] [Related]
22. Building Electromagnetic Hot Spots in Living Cells via Target-Triggered Nanoparticle Dimerization. Zhou W; Li Q; Liu H; Yang J; Liu D ACS Nano; 2017 Apr; 11(4):3532-3541. PubMed ID: 28264152 [TBL] [Abstract][Full Text] [Related]
23. A ring-shaped protein clusters gold nanoparticles acting as molecular scaffold for plasmonic surfaces. Ardini M; Huang JA; Caprettini V; De Angelis F; Fata F; Silvestri I; Cimini A; Giansanti F; Angelucci F; Ippoliti R Biochim Biophys Acta Gen Subj; 2020 Aug; 1864(8):129617. PubMed ID: 32304715 [TBL] [Abstract][Full Text] [Related]
24. Optimization of electromagnetic hot spots in surface-enhanced Raman scattering substrates for an ultrasensitive drug assay of emergency department patients' plasma. Liyanage T; Masterson AN; Hati S; Ren G; Manicke NE; Rusyniak DE; Sardar R Analyst; 2020 Nov; 145(23):7662-7672. PubMed ID: 32969415 [TBL] [Abstract][Full Text] [Related]
25. Plasmonic properties of regiospecific core-satellite assemblies of gold nanostars and nanospheres. Indrasekara AS; Thomas R; Fabris L Phys Chem Chem Phys; 2015 Sep; 17(33):21133-42. PubMed ID: 25380028 [TBL] [Abstract][Full Text] [Related]
26. Monodispersed mesoscopic star-shaped gold particles via silver-ion-assisted multi-directional growth for highly sensitive SERS-active substrates. Kim S; Yoo S; Nam DH; Kim H; Hafner JH; Lee S Nano Converg; 2024 Jul; 11(1):26. PubMed ID: 38965160 [TBL] [Abstract][Full Text] [Related]
27. Liquid-liquid interfacial self-assembled Au NP arrays for the rapid and sensitive detection of butyl benzyl phthalate (BBP) by surface-enhanced Raman spectroscopy. Liu J; Li J; Li F; Zhou Y; Hu X; Xu T; Xu W Anal Bioanal Chem; 2018 Aug; 410(21):5277-5285. PubMed ID: 29943263 [TBL] [Abstract][Full Text] [Related]
28. Label-Free Surface-Enhanced Raman Spectroscopy Biosensor for On-Site Breast Cancer Detection Using Human Tears. Kim S; Kim TG; Lee SH; Kim W; Bang A; Moon SW; Song J; Shin JH; Yu JS; Choi S ACS Appl Mater Interfaces; 2020 Feb; 12(7):7897-7904. PubMed ID: 31971765 [TBL] [Abstract][Full Text] [Related]
29. Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: a highly efficient surface-enhanced Raman scattering substrates with high density of "hot" spots. Zhu H; Du M; Zhang M; Wang P; Bao S; Zou M; Fu Y; Yao J Biosens Bioelectron; 2014 Apr; 54():91-101. PubMed ID: 24252765 [TBL] [Abstract][Full Text] [Related]
30. Engineering photonic-plasmonic coupling in metal nanoparticle necklaces. Pasquale AJ; Reinhard BM; Dal Negro L ACS Nano; 2011 Aug; 5(8):6578-85. PubMed ID: 21739951 [TBL] [Abstract][Full Text] [Related]
31. Astronomical liquid mirrors as highly ultrasensitive, broadband-operational surface-enhanced Raman scattering-active substrates. Lu TY; Lee YC; Yen YT; Yu CC; Chen HL J Colloid Interface Sci; 2016 Mar; 466():80-90. PubMed ID: 26707775 [TBL] [Abstract][Full Text] [Related]
32. Label-free, zeptomole cancer biomarker detection by surface-enhanced fluorescence on nanoporous gold disk plasmonic nanoparticles. Santos GM; Zhao F; Zeng J; Li M; Shih WC J Biophotonics; 2015 Oct; 8(10):855-63. PubMed ID: 25727212 [TBL] [Abstract][Full Text] [Related]
33. Enhancing Nonfouling and Sensitivity of Surface-Enhanced Raman Scattering Substrates for Potent Drug Analysis in Blood Plasma via Fabrication of a Flexible Plasmonic Patch. Masterson AN; Hati S; Ren G; Liyanage T; Manicke NE; Goodpaster JV; Sardar R Anal Chem; 2021 Feb; 93(4):2578-2588. PubMed ID: 33432809 [TBL] [Abstract][Full Text] [Related]
34. DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Thacker VV; Herrmann LO; Sigle DO; Zhang T; Liedl T; Baumberg JJ; Keyser UF Nat Commun; 2014 Mar; 5():3448. PubMed ID: 24622339 [TBL] [Abstract][Full Text] [Related]
35. DNA-induced assembly of gold nanoprisms and polystyrene beads into 3D plasmonic SERS substrates. Chowdhury E; Rahaman MS; Sathitsuksanoh N; Grapperhaus CA; O'Toole MG Nanotechnology; 2021 Jan; 32(2):025506. PubMed ID: 32987380 [TBL] [Abstract][Full Text] [Related]
36. 3D aluminum/silver hierarchical nanostructure with large areas of dense hot spots for surface-enhanced raman scattering. Zhao N; Li H; Xie Y; Feng Z; Wang Z; Yang Z; Yan X; Wang W; Tian C; Yu H Electrophoresis; 2019 Dec; 40(23-24):3123-3131. PubMed ID: 31576580 [TBL] [Abstract][Full Text] [Related]
37. Self-assembled large Au nanoparticle arrays with regular hot spots for SERS. Chen A; DePrince AE; Demortière A; Joshi-Imre A; Shevchenko EV; Gray SK; Welp U; Vlasko-Vlasov VK Small; 2011 Aug; 7(16):2365-71. PubMed ID: 21630447 [TBL] [Abstract][Full Text] [Related]
38. Gold-capped silicon for ultrasensitive SERS-biosensing: Towards human biofluids analysis. Kamińska A; Szymborski T; Jaroch T; Zmysłowski A; Szterk A Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():208-217. PubMed ID: 29519430 [TBL] [Abstract][Full Text] [Related]
39. Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars. Zhang Q; Large N; Wang H ACS Appl Mater Interfaces; 2014 Oct; 6(19):17255-67. PubMed ID: 25222940 [TBL] [Abstract][Full Text] [Related]
40. Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis. Wy Y; Jung H; Hong JW; Han SW Acc Chem Res; 2022 Mar; 55(6):831-843. PubMed ID: 35213153 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]