These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34242032)

  • 1. Machine Learning Force Fields: Recent Advances and Remaining Challenges.
    Poltavsky I; Tkatchenko A
    J Phys Chem Lett; 2021 Jul; 12(28):6551-6564. PubMed ID: 34242032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perspective: Machine learning potentials for atomistic simulations.
    Behler J
    J Chem Phys; 2016 Nov; 145(17):170901. PubMed ID: 27825224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in Docking.
    Sulimov VB; Kutov DC; Sulimov AV
    Curr Med Chem; 2019; 26(42):7555-7580. PubMed ID: 30182836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data-Driven Strategies for Accelerated Materials Design.
    Pollice R; Dos Passos Gomes G; Aldeghi M; Hickman RJ; Krenn M; Lavigne C; Lindner-D'Addario M; Nigam A; Ser CT; Yao Z; Aspuru-Guzik A
    Acc Chem Res; 2021 Feb; 54(4):849-860. PubMed ID: 33528245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards exact molecular dynamics simulations with machine-learned force fields.
    Chmiela S; Sauceda HE; Müller KR; Tkatchenko A
    Nat Commun; 2018 Sep; 9(1):3887. PubMed ID: 30250077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unsupervised machine learning in atomistic simulations, between predictions and understanding.
    Ceriotti M
    J Chem Phys; 2019 Apr; 150(15):150901. PubMed ID: 31005087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A general-purpose machine-learning force field for bulk and nanostructured phosphorus.
    Deringer VL; Caro MA; Csányi G
    Nat Commun; 2020 Oct; 11(1):5461. PubMed ID: 33122630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perspective on integrating machine learning into computational chemistry and materials science.
    Westermayr J; Gastegger M; Schütt KT; Maurer RJ
    J Chem Phys; 2021 Jun; 154(23):230903. PubMed ID: 34241249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Science-Driven Atomistic Machine Learning.
    Margraf JT
    Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202219170. PubMed ID: 36896758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning at the Interface of Polymer Science and Biology: How Far Can We Go?
    Gianti E; Percec S
    Biomacromolecules; 2022 Mar; 23(3):576-591. PubMed ID: 35133143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extending machine learning beyond interatomic potentials for predicting molecular properties.
    Fedik N; Zubatyuk R; Kulichenko M; Lubbers N; Smith JS; Nebgen B; Messerly R; Li YW; Boldyrev AI; Barros K; Isayev O; Tretiak S
    Nat Rev Chem; 2022 Sep; 6(9):653-672. PubMed ID: 37117713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning for condensed matter physics.
    Bedolla E; Padierna LC; Castañeda-Priego R
    J Phys Condens Matter; 2020 Nov; 33(5):. PubMed ID: 32932243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions.
    Schütt KT; Gastegger M; Tkatchenko A; Müller KR; Maurer RJ
    Nat Commun; 2019 Nov; 10(1):5024. PubMed ID: 31729373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning Interatomic Potentials as Emerging Tools for Materials Science.
    Deringer VL; Caro MA; Csányi G
    Adv Mater; 2019 Nov; 31(46):e1902765. PubMed ID: 31486179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Algorithmic Differentiation for Automated Modeling of Machine Learned Force Fields.
    Schmitz NF; Müller KR; Chmiela S
    J Phys Chem Lett; 2022 Nov; 13(43):10183-10189. PubMed ID: 36279418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
    Ferrer S; Ruiz-Pernía J; Martí S; Moliner V; Tuñón I; Bertrán J; Andrés J
    Adv Protein Chem Struct Biol; 2011; 85():81-142. PubMed ID: 21920322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems.
    Keith JA; Vassilev-Galindo V; Cheng B; Chmiela S; Gastegger M; Müller KR; Tkatchenko A
    Chem Rev; 2021 Aug; 121(16):9816-9872. PubMed ID: 34232033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On scientific understanding with artificial intelligence.
    Krenn M; Pollice R; Guo SY; Aldeghi M; Cervera-Lierta A; Friederich P; Dos Passos Gomes G; Häse F; Jinich A; Nigam A; Yao Z; Aspuru-Guzik A
    Nat Rev Phys; 2022; 4(12):761-769. PubMed ID: 36247217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.