BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 34242250)

  • 41. Recognizing protected and anthropogenic patterns in landscapes using interpretable machine learning and satellite imagery.
    Stomberg TT; Leonhardt J; Weber I; Roscher R
    Front Artif Intell; 2023; 6():1278118. PubMed ID: 38106982
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Understanding the Effects of Optimal Combination of Spectral Bands on Deep Learning Model Predictions: A Case Study Based on Permafrost Tundra Landform Mapping Using High Resolution Multispectral Satellite Imagery.
    Bhuiyan MAE; Witharana C; Liljedahl AK; Jones BM; Daanen R; Epstein HE; Kent K; Griffin CG; Agnew A
    J Imaging; 2020 Sep; 6(9):. PubMed ID: 34460754
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Integrating satellite imagery with simulation modeling to improve burn severity mapping.
    Karau EC; Sikkink PG; Keane RE; Dillon GK
    Environ Manage; 2014 Jul; 54(1):98-111. PubMed ID: 24817334
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fine-scale mapping of vector habitats using very high resolution satellite imagery: a liver fluke case-study.
    De Roeck E; Van Coillie F; De Wulf R; Soenen K; Charlier J; Vercruysse J; Hantson W; Ducheyne E; Hendrickx G
    Geospat Health; 2014 Dec; 8(3):S671-83. PubMed ID: 25599638
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Combining Human Computing and Machine Learning to Make Sense of Big (Aerial) Data for Disaster Response.
    Ofli F; Meier P; Imran M; Castillo C; Tuia D; Rey N; Briant J; Millet P; Reinhard F; Parkan M; Joost S
    Big Data; 2016 Mar; 4(1):47-59. PubMed ID: 27441584
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Convcast: An embedded convolutional LSTM based architecture for precipitation nowcasting using satellite data.
    Kumar A; Islam T; Sekimoto Y; Mattmann C; Wilson B
    PLoS One; 2020; 15(3):e0230114. PubMed ID: 32160237
    [TBL] [Abstract][Full Text] [Related]  

  • 47. From road centrelines to carriageways-A reconstruction algorithm.
    Vitalis S; Labetski A; Ledoux H; Stoter J
    PLoS One; 2022; 17(2):e0262801. PubMed ID: 35192631
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deep learning approach to assess damage mechanics of bone tissue.
    Shen SC; Peña Fernández M; Tozzi G; Buehler MJ
    J Mech Behav Biomed Mater; 2021 Nov; 123():104761. PubMed ID: 34450416
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of road development and associated agricultural land use change.
    Alphan H
    Environ Monit Assess; 2017 Dec; 190(1):5. PubMed ID: 29209817
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fugitive dust emissions from paved road travel in the Lake Tahoe basin.
    Zhu D; Kuhns HD; Brown S; Gillies JA; Etyemezian V; Gertler AW
    J Air Waste Manag Assoc; 2009 Oct; 59(10):1219-29. PubMed ID: 19842329
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Crater detection from commercial satellite imagery to estimate unexploded ordnance in Cambodian agricultural land.
    Lin E; Qin R; Edgerton J; Kong D
    PLoS One; 2020; 15(3):e0229826. PubMed ID: 32187184
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Roof Shape Classification from LiDAR and Satellite Image Data Fusion Using Supervised Learning.
    Castagno J; Atkins E
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30445731
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Measuring Human and Economic Activity From Satellite Imagery to Support City-Scale Decision-Making During COVID-19 Pandemic.
    Minetto R; Segundo MP; Rotich G; Sarkar S
    IEEE Trans Big Data; 2021 Mar; 7(1):56-68. PubMed ID: 37981992
    [TBL] [Abstract][Full Text] [Related]  

  • 54. On the Application of Time Frequency Convolutional Neural Networks to Road Anomalies' Identification with Accelerometers and Gyroscopes.
    Baldini G; Giuliani R; Geib F
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182786
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Blood Stain Classification with Hyperspectral Imaging and Deep Neural Networks.
    Książek K; Romaszewski M; Głomb P; Grabowski B; Cholewa M
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33233358
    [TBL] [Abstract][Full Text] [Related]  

  • 56. AutoTune: Automatically Tuning Convolutional Neural Networks for Improved Transfer Learning.
    Basha SHS; Vinakota SK; Pulabaigari V; Mukherjee S; Dubey SR
    Neural Netw; 2021 Jan; 133():112-122. PubMed ID: 33181405
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transfer learning with convolutional neural networks for cancer survival prediction using gene-expression data.
    López-García G; Jerez JM; Franco L; Veredas FJ
    PLoS One; 2020; 15(3):e0230536. PubMed ID: 32214348
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Large-Scale Dataset and Deep Learning Model for Detecting and Counting Olive Trees in Satellite Imagery.
    Abozeid A; Alanazi R; Elhadad A; Taloba AI; Abd El-Aziz RM
    Comput Intell Neurosci; 2022; 2022():1549842. PubMed ID: 35075356
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assessing the population coverage of a health demographic surveillance system using satellite imagery and crowd-sourcing.
    Di Pasquale A; McCann RS; Maire N
    PLoS One; 2017; 12(8):e0183661. PubMed ID: 28859109
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Using deep learning and Google Street View to estimate the demographic makeup of neighborhoods across the United States.
    Gebru T; Krause J; Wang Y; Chen D; Deng J; Aiden EL; Fei-Fei L
    Proc Natl Acad Sci U S A; 2017 Dec; 114(50):13108-13113. PubMed ID: 29183967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.