BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34242401)

  • 1. Targeted sequencing of localized acral melanoma in Korean patients identified recurrent CCND1 amplification.
    Kim YS; Jung SH; Chung YJ; Lee JH
    Int J Dermatol; 2022 Feb; 61(2):e61-e63. PubMed ID: 34242401
    [No Abstract]   [Full Text] [Related]  

  • 2. CCND1 copy number increase and cyclin D1 expression in acral melanoma: a comparative study of fluorescence in situ hybridization and immunohistochemistry in a Chinese cohort.
    Liu J; Yu W; Gao F; Qi S; Du J; Ma X; Zhang Y; Zheng J; Su J
    Diagn Pathol; 2021 Jul; 16(1):60. PubMed ID: 34225728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic Alterations in Primary Acral Melanoma and Acral Melanocytic Nevus in Korea: Common Mutated Genes Show Distinct Cytomorphological Features.
    Moon KR; Choi YD; Kim JM; Jin S; Shin MH; Shim HJ; Lee JB; Yun SJ
    J Invest Dermatol; 2018 Apr; 138(4):933-945. PubMed ID: 29191620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An update on the implications of cyclin D1 in melanomas.
    González-Ruiz L; González-Moles MÁ; González-Ruiz I; Ruiz-Ávila I; Ayén Á; Ramos-García P
    Pigment Cell Melanoma Res; 2020 Nov; 33(6):788-805. PubMed ID: 32147907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of CCND1 alterations during the progression of cutaneous malignant melanoma.
    Vízkeleti L; Ecsedi S; Rákosy Z; Orosz A; Lázár V; Emri G; Koroknai V; Kiss T; Ádány R; Balázs M
    Tumour Biol; 2012 Dec; 33(6):2189-99. PubMed ID: 23001925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oncogenic signaling pathways and hallmarks of cancer in Korean patients with acral melanoma.
    Moon S; Kim HJ; Lee Y; Lee YJ; Jung S; Lee JS; Hahn SH; Kim K; Roh JY; Nam S
    Comput Biol Med; 2023 Mar; 154():106602. PubMed ID: 36716688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Malignant melanoma with monster cells showing massive cyclin D1 amplification.
    Pouryazdanparast P; Newman M; Mafee M; Guitart J; Gerami P
    Am J Dermatopathol; 2009 Jun; 31(4):402-3. PubMed ID: 19461251
    [No Abstract]   [Full Text] [Related]  

  • 8. Detecting copy number alterations of oncogenes in cell-free DNA to monitor treatment response in acral and mucosal melanoma.
    Mikoshiba A; Ashida A; Sakaizawa K; Kiniwa Y; Okuyama R
    J Dermatol Sci; 2020 Mar; 97(3):172-178. PubMed ID: 31987696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diagnostic application of cyclin D1 fluorescent in situ hybridization for histologically undetermined early lesions of acral melanoma in situ: A case series.
    Cho-Vega JH; Cao T; Ledon J; Moller M; Avisar E; Elgart G; Tan JH; Fan YS; Grichnik JM
    Ann Diagn Pathol; 2021 Feb; 50():151681. PubMed ID: 33341705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PD-L1 expression is regulated by microphthalmia-associated transcription factor (MITF) in nodular melanoma.
    Vučinić D; Grahovac M; Grahovac B; Vitezić BM; Kovač L; Belušić-Gobić M; Zamolo G
    Pathol Res Pract; 2022 Jan; 229():153725. PubMed ID: 34942512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclin D1 is a candidate oncogene in cutaneous melanoma.
    Sauter ER; Yeo UC; von Stemm A; Zhu W; Litwin S; Tichansky DS; Pistritto G; Nesbit M; Pinkel D; Herlyn M; Bastian BC
    Cancer Res; 2002 Jun; 62(11):3200-6. PubMed ID: 12036934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct sets of genetic alterations in melanoma.
    Curtin JA; Fridlyand J; Kageshita T; Patel HN; Busam KJ; Kutzner H; Cho KH; Aiba S; Bröcker EB; LeBoit PE; Pinkel D; Bastian BC
    N Engl J Med; 2005 Nov; 353(20):2135-47. PubMed ID: 16291983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole-exome sequencing reveals differences between nail apparatus melanoma and acral melanoma.
    Lee M; Yoon J; Chung YJ; Lee SY; Choi JY; Shin OR; Park HY; Bahk WJ; Yu DS; Lee YB
    J Am Acad Dermatol; 2018 Sep; 79(3):559-561.e1. PubMed ID: 29438763
    [No Abstract]   [Full Text] [Related]  

  • 14. Specific dermoscopy patterns and amplifications of the cyclin D1 gene to define histopathologically unrecognizable early lesions of acral melanoma in situ.
    Yamaura M; Takata M; Miyazaki A; Saida T
    Arch Dermatol; 2005 Nov; 141(11):1413-8. PubMed ID: 16301388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homogeneous staining regions for cyclin D1, a marker of poor prognosis in malignant melanoma.
    Gammon B; Ali L; Guitart J; Gerami P
    Am J Dermatopathol; 2012 Jul; 34(5):487-90. PubMed ID: 22456513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA-365 Inhibits Cell Growth and Promotes Apoptosis in Melanoma by Targeting BCL2 and Cyclin D1 (CCND1).
    Zhu Y; Wen X; Zhao P
    Med Sci Monit; 2018 Jun; 24():3679-3692. PubMed ID: 29858490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lack of associations of selected variants in genes involved in cell cycle and apoptosis with skin cancer risk.
    Han J; Colditz GA; Hunter DJ
    Cancer Epidemiol Biomarkers Prev; 2006 Mar; 15(3):592-3. PubMed ID: 16537723
    [No Abstract]   [Full Text] [Related]  

  • 18. Role of ROC1 protein in the control of cyclin D1 protein expression in skin melanomas.
    Nai G; Marques M
    Pathol Res Pract; 2011 Mar; 207(3):174-81. PubMed ID: 21300445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular pathogenesis of malignant melanoma: a different perspective from the studies of melanocytic nevus and acral melanoma.
    Takata M; Murata H; Saida T
    Pigment Cell Melanoma Res; 2010 Feb; 23(1):64-71. PubMed ID: 19788535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Malignant Melanoma of the Nail Apparatus: A Fluorescence In Situ Hybridization Analysis of 7 Cases.
    Romano RC; Shon W; Sukov WR
    Int J Surg Pathol; 2016 Sep; 24(6):512-8. PubMed ID: 27185405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.