BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 34242654)

  • 21. Role of Müller cells in cone mosaic rearrangement in a rat model of retinitis pigmentosa.
    Lee EJ; Ji Y; Zhu CL; Grzywacz NM
    Glia; 2011 Jul; 59(7):1107-17. PubMed ID: 21547953
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neuronatin is a stress-responsive protein of rod photoreceptors.
    Shinde V; Pitale PM; Howse W; Gorbatyuk O; Gorbatyuk M
    Neuroscience; 2016 Jul; 328():1-8. PubMed ID: 27109921
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Pro23His mutation alters prenatal rod photoreceptor morphology in a transgenic swine model of retinitis pigmentosa.
    Scott PA; Fernandez de Castro JP; Kaplan HJ; McCall MA
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2452-9. PubMed ID: 24618321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The relationship of photoreceptor degeneration to retinal vascular development and loss in mutant rhodopsin transgenic and RCS rats.
    Pennesi ME; Nishikawa S; Matthes MT; Yasumura D; LaVail MM
    Exp Eye Res; 2008 Dec; 87(6):561-70. PubMed ID: 18848932
    [TBL] [Abstract][Full Text] [Related]  

  • 25. AAV-Txnip prolongs cone survival and vision in mouse models of retinitis pigmentosa.
    Xue Y; Wang SK; Rana P; West ER; Hong CM; Feng H; Wu DM; Cepko CL
    Elife; 2021 Apr; 10():. PubMed ID: 33847261
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Testing for a gap junction-mediated bystander effect in retinitis pigmentosa: secondary cone death is not altered by deletion of connexin36 from cones.
    Kranz K; Paquet-Durand F; Weiler R; Janssen-Bienhold U; Dedek K
    PLoS One; 2013; 8(2):e57163. PubMed ID: 23468924
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increased TRPM-2/clusterin mRNA levels during the time of retinal degeneration in mouse models of retinitis pigmentosa.
    Wong P; Borst DE; Farber D; Danciger JS; Tenniswood M; Chader GJ; van Veen T
    Biochem Cell Biol; 1994; 72(9-10):439-46. PubMed ID: 7605616
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ATF6 is required for efficient rhodopsin clearance and retinal homeostasis in the P23H rho retinitis pigmentosa mouse model.
    Lee EJ; Chan P; Chea L; Kim K; Kaufman RJ; Lin JH
    Sci Rep; 2021 Aug; 11(1):16356. PubMed ID: 34381136
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidative damage is a potential cause of cone cell death in retinitis pigmentosa.
    Shen J; Yang X; Dong A; Petters RM; Peng YW; Wong F; Campochiaro PA
    J Cell Physiol; 2005 Jun; 203(3):457-64. PubMed ID: 15744744
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Autosomal dominant retinitis pigmentosa caused by the threonine-17-methionine rhodopsin mutation: retinal histopathology and immunocytochemistry.
    Li ZY; Jacobson SG; Milam AH
    Exp Eye Res; 1994 Apr; 58(4):397-408. PubMed ID: 7925677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dysmorphic photoreceptors in a P23H mutant rhodopsin model of retinitis pigmentosa are metabolically active and capable of regenerating to reverse retinal degeneration.
    Lee DC; Vazquez-Chona FR; Ferrell WD; Tam BM; Jones BW; Marc RE; Moritz OL
    J Neurosci; 2012 Feb; 32(6):2121-8. PubMed ID: 22323724
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rearrangement of the cone mosaic in the retina of the rat model of retinitis pigmentosa.
    Ji Y; Zhu CL; Grzywacz NM; Lee EJ
    J Comp Neurol; 2012 Mar; 520(4):874-88. PubMed ID: 22102145
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Induction of endoplasmic reticulum stress genes, BiP and chop, in genetic and environmental models of retinal degeneration.
    Kroeger H; Messah C; Ahern K; Gee J; Joseph V; Matthes MT; Yasumura D; Gorbatyuk MS; Chiang WC; LaVail MM; Lin JH
    Invest Ophthalmol Vis Sci; 2012 Nov; 53(12):7590-9. PubMed ID: 23074209
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rhodopsin-mediated retinitis pigmentosa.
    Malanson KM; Lem J
    Prog Mol Biol Transl Sci; 2009; 88():1-31. PubMed ID: 20374723
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential of Small Molecule-Mediated Reprogramming of Rod Photoreceptors to Treat Retinitis Pigmentosa.
    Nakamura PA; Tang S; Shimchuk AA; Ding S; Reh TA
    Invest Ophthalmol Vis Sci; 2016 Nov; 57(14):6407-6415. PubMed ID: 27893103
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cell type-specific changes in retinal ganglion cell function induced by rod death and cone reorganization in rats.
    Yu WQ; Grzywacz NM; Lee EJ; Field GD
    J Neurophysiol; 2017 Jul; 118(1):434-454. PubMed ID: 28424296
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Abnormalities in rod photoreceptors, amacrine cells, and horizontal cells in human retinas with retinitis pigmentosa.
    Fariss RN; Li ZY; Milam AH
    Am J Ophthalmol; 2000 Feb; 129(2):215-23. PubMed ID: 10682975
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alterations in glutamate cysteine ligase content in the retina of two retinitis pigmentosa animal models.
    Sánchez-Vallejo V; Benlloch-Navarro S; Trachsel-Moncho L; López-Pedrajas R; Almansa I; Romero FJ; Miranda M
    Free Radic Biol Med; 2016 Jul; 96():245-54. PubMed ID: 27140233
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antioxidants slow photoreceptor cell death in mouse models of retinitis pigmentosa.
    Komeima K; Rogers BS; Campochiaro PA
    J Cell Physiol; 2007 Dec; 213(3):809-15. PubMed ID: 17520694
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Robust expression of the TRPC1 channel associated with photoreceptor loss in the rat retina.
    Caminos E; Murillo-Martínez M; García-Belando M; Cabanes-Sanchís JJ; Martinez-Galan JR
    Exp Eye Res; 2023 Nov; 236():109655. PubMed ID: 37722585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.