These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34242682)

  • 1. Developmental plasticity of NMDA receptors at the calyx of Held synapse.
    Gurma M; Yang YM; Wang LY
    Neuropharmacology; 2021 Sep; 196():108697. PubMed ID: 34242682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presynaptic Diversity Revealed by Ca
    Lujan B; Dagostin A; von Gersdorff H
    J Neurosci; 2019 Apr; 39(16):2981-2994. PubMed ID: 30679394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delayed expression of activity-dependent gating switch in synaptic AMPARs at a central synapse.
    Lesperance LS; Yang YM; Wang LY
    Mol Brain; 2020 Jan; 13(1):6. PubMed ID: 31941524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coincident activation of metabotropic glutamate receptors and NMDA receptors (NMDARs) downregulates perisynaptic/extrasynaptic NMDARs and enhances high-fidelity neurotransmission at the developing calyx of Held synapse.
    Joshi I; Yang YM; Wang LY
    J Neurosci; 2007 Sep; 27(37):9989-99. PubMed ID: 17855613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMDA receptor-dependent presynaptic inhibition at the calyx of Held synapse of rat pups.
    Oshima-Takago T; Takago H
    Open Biol; 2017 Jul; 7(7):. PubMed ID: 28747405
    [No Abstract]   [Full Text] [Related]  

  • 6. Developmental profiles of glutamate receptors and synaptic transmission at a single synapse in the mouse auditory brainstem.
    Joshi I; Wang LY
    J Physiol; 2002 May; 540(Pt 3):861-73. PubMed ID: 11986375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of GluA3 AMPA Receptor Subunits in the Presynaptic and Postsynaptic Maturation of Synaptic Transmission and Plasticity of Endbulb-Bushy Cell Synapses in the Cochlear Nucleus.
    Antunes FM; Rubio ME; Kandler K
    J Neurosci; 2020 Mar; 40(12):2471-2484. PubMed ID: 32051325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dynamic range for gain control of NMDA receptor-mediated synaptic transmission at a single synapse.
    Wang LY
    J Neurosci; 2000 Dec; 20(24):RC115. PubMed ID: 11125014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms Underlying Enhancement of Spontaneous Glutamate Release by Group I mGluRs at a Central Auditory Synapse.
    Peng K; Wang X; Wang Y; Li D; Huang H; Lu Y
    J Neurosci; 2020 Sep; 40(37):7027-7042. PubMed ID: 32801152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptotagmin-7-Mediated Asynchronous Release Boosts High-Fidelity Synchronous Transmission at a Central Synapse.
    Luo F; Südhof TC
    Neuron; 2017 May; 94(4):826-839.e3. PubMed ID: 28521135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic plasticity in an altered state.
    Philpot BD; Bear MF
    Neuron; 2002 Feb; 33(5):665-7. PubMed ID: 11879642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction between metabotropic and NMDA subtypes of glutamate receptors in sprout suppression at young synapses.
    Miskevich F; Lu W; Lin SY; Constantine-Paton M
    J Neurosci; 2002 Jan; 22(1):226-38. PubMed ID: 11756506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acid-Sensing Ion Channels Activated by Evoked Released Protons Modulate Synaptic Transmission at the Mouse Calyx of Held Synapse.
    González-Inchauspe C; Urbano FJ; Di Guilmi MN; Uchitel OD
    J Neurosci; 2017 Mar; 37(10):2589-2599. PubMed ID: 28159907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of Group II Metabotropic Glutamate Receptors Promotes LTP Induction at Schaffer Collateral-CA1 Pyramidal Cell Synapses by Priming NMDA Receptors.
    Rosenberg N; Gerber U; Ster J
    J Neurosci; 2016 Nov; 36(45):11521-11531. PubMed ID: 27911756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fine-tuning an auditory synapse for speed and fidelity: developmental changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity.
    Taschenberger H; von Gersdorff H
    J Neurosci; 2000 Dec; 20(24):9162-73. PubMed ID: 11124994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Target- and input-dependent organization of AMPA and NMDA receptors in synaptic connections of the cochlear nucleus.
    Rubio ME; Fukazawa Y; Kamasawa N; Clarkson C; Molnár E; Shigemoto R
    J Comp Neurol; 2014 Dec; 522(18):4023-42. PubMed ID: 25041792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane trafficking and positioning of mGluRs at presynaptic and postsynaptic sites of excitatory synapses.
    Bodzęta A; Scheefhals N; MacGillavry HD
    Neuropharmacology; 2021 Dec; 200():108799. PubMed ID: 34592242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diminished neuronal activity increases neuron-neuron connectivity underlying silent synapse formation and the rapid conversion of silent to functional synapses.
    Nakayama K; Kiyosue K; Taguchi T
    J Neurosci; 2005 Apr; 25(16):4040-51. PubMed ID: 15843606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-fidelity transmission acquired via a developmental decrease in NMDA receptor expression at an auditory synapse.
    Futai K; Okada M; Matsuyama K; Takahashi T
    J Neurosci; 2001 May; 21(10):3342-9. PubMed ID: 11331363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of mGluR5 in synaptic function and plasticity of the mouse thalamocortical pathway.
    She WC; Quairiaux C; Albright MJ; Wang YC; Sanchez DE; Chang PS; Welker E; Lu HC
    Eur J Neurosci; 2009 Apr; 29(7):1379-96. PubMed ID: 19519626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.