These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34242704)

  • 21. Chronic in vivo multi-circuit neurophysiological recordings in mice.
    Dzirasa K; Fuentes R; Kumar S; Potes JM; Nicolelis MA
    J Neurosci Methods; 2011 Jan; 195(1):36-46. PubMed ID: 21115042
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large-scale neural ensemble recording in the brains of freely behaving mice.
    Lin L; Chen G; Xie K; Zaia KA; Zhang S; Tsien JZ
    J Neurosci Methods; 2006 Jul; 155(1):28-38. PubMed ID: 16554093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An implantable two axis micromanipulator made with a 3D printer for recording neural activity in free-swimming fish.
    Rogers LS; Van Wert JC; Mensinger AF
    J Neurosci Methods; 2017 Aug; 288():29-33. PubMed ID: 28648718
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Action potential waveform variability limits multi-unit separation in freely behaving rats.
    Stratton P; Cheung A; Wiles J; Kiyatkin E; Sah P; Windels F
    PLoS One; 2012; 7(6):e38482. PubMed ID: 22719894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of tube tetrodes and a multi-tetrode drive for deep structure electrophysiological recordings in the macaque brain.
    Kapoor V; Krampe E; Klug A; Logothetis NK; Panagiotaropoulos TI
    J Neurosci Methods; 2013 May; 216(1):43-8. PubMed ID: 23549063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The DMCdrive: practical 3D-printable micro-drive system for reliable chronic multi-tetrode recording and optogenetic application in freely behaving rodents.
    Kim H; Brünner HS; Carlén M
    Sci Rep; 2020 Jul; 10(1):11838. PubMed ID: 32678238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CMU Array: A 3D nanoprinted, fully customizable high-density microelectrode array platform.
    Saleh MS; Ritchie SM; Nicholas MA; Gordon HL; Hu C; Jahan S; Yuan B; Bezbaruah R; Reddy JW; Ahmed Z; Chamanzar M; Yttri EA; Panat RP
    Sci Adv; 2022 Oct; 8(40):eabj4853. PubMed ID: 36197979
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simultaneous Recordings of Cortical Local Field Potentials, Electrocardiogram, Electromyogram, and Breathing Rhythm from a Freely Moving Rat.
    Shikano Y; Sasaki T; Ikegaya Y
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29658939
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spike-field Granger causality for hybrid neural data analysis.
    Gong X; Li W; Liang H
    J Neurophysiol; 2019 Aug; 122(2):809-822. PubMed ID: 31242046
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wireless Electrophysiological Recording of Neurons by Movable Tetrodes in Freely Swimming Fish.
    Cohen L; Vinepinsky E; Segev R
    J Vis Exp; 2019 Nov; (153):. PubMed ID: 31840665
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long-term decoding stability of local field potentials from silicon arrays in primate motor cortex during a 2D center out task.
    Wang D; Zhang Q; Li Y; Wang Y; Zhu J; Zhang S; Zheng X
    J Neural Eng; 2014 Jun; 11(3):036009. PubMed ID: 24809544
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 512-Channel and 13-Region Simultaneous Recordings Coupled with Optogenetic Manipulation in Freely Behaving Mice.
    Xie K; Fox GE; Liu J; Tsien JZ
    Front Syst Neurosci; 2016; 10():48. PubMed ID: 27378865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Incorporating 3D-printing technology in the design of head-caps and electrode drives for recording neurons in multiple brain regions.
    Headley DB; DeLucca MV; Haufler D; Paré D
    J Neurophysiol; 2015 Apr; 113(7):2721-32. PubMed ID: 25652930
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced Burst-Suppression and Disruption of Local Field Potential Synchrony in a Mouse Model of Focal Cortical Dysplasia Exhibiting Spike-Wave Seizures.
    Williams AJ; Zhou C; Sun QQ
    Front Neural Circuits; 2016; 10():93. PubMed ID: 27891080
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D Printed Cranial Window System for Chronic μECoG Recording.
    Bent B; Williams AJ; Bolick R; Chiang CH; Trumpis M; Viventi J
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4591-4594. PubMed ID: 30441374
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Multi-channel in vivo recording technique: microdrive array fabrication and electrode implantation in mice].
    Ma XY; Zhang YY; Wang LN; Lin LN
    Sheng Li Xue Bao; 2013 Dec; 65(6):637-46. PubMed ID: 24343722
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel fabrication method of carbon electrodes using 3D printing and chemical modification process.
    Tian P; Chen C; Hu J; Qi J; Wang Q; Chen JC; Cavanaugh J; Peng Y; Cheng MM
    Biomed Microdevices; 2017 Nov; 20(1):4. PubMed ID: 29170867
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-density electrophysiological recordings in macaque using a chronically implanted 128-channel passive silicon probe.
    Klein L; Pothof F; Raducanu BC; Klon-Lipok J; Shapcott KA; Musa S; Andrei A; Aarts AA; Paul O; Singer W; Ruther P
    J Neural Eng; 2020 Apr; 17(2):026036. PubMed ID: 32217819
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An open source 3-d printed modular micro-drive system for acute neurophysiology.
    Patel SR; Ghose K; Eskandar EN
    PLoS One; 2014; 9(4):e94262. PubMed ID: 24736691
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of a high-density multi-channel electrode for multi-structure parallel recordings in rodents.
    Ivica N; Tamté M; Ahmed M; Richter U; Petersson P
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():393-6. PubMed ID: 25569979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.