These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 34242721)

  • 21. Neural markers for immediate performance accuracy in a Stroop color-word matching task: an event-related potentials analysis.
    Shou G; Ding L
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6222-5. PubMed ID: 25571418
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Age differences in attentional control: an event-related potential approach.
    Kray J; Eppinger B; Mecklinger A
    Psychophysiology; 2005 Jul; 42(4):407-16. PubMed ID: 16008769
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anxiety, emotional distraction, and attentional control in the Stroop task.
    Kalanthroff E; Henik A; Derakshan N; Usher M
    Emotion; 2016 Apr; 16(3):293-300. PubMed ID: 26571078
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Difficulty in disengaging attention from threatening facial expressions in anxiety: a new approach in terms of benefits.
    Leleu V; Douilliez C; Rusinek S
    J Behav Ther Exp Psychiatry; 2014 Mar; 45(1):203-7. PubMed ID: 24239586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding sources of adult age differences in task switching: Evidence from behavioral and ERP studies.
    Gajewski PD; Ferdinand NK; Kray J; Falkenstein M
    Neurosci Biobehav Rev; 2018 Sep; 92():255-275. PubMed ID: 29885425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Altered relationship between prefrontal glutamate and activation during cognitive control in people with high trait anxiety.
    Morgenroth E; Orlov N; Lythgoe DJ; Stone JM; Barker H; Munro J; Eysenck M; Allen P
    Cortex; 2019 Aug; 117():53-63. PubMed ID: 30928721
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An information theoretical approach to task-switching: evidence from cognitive brain potentials in humans.
    Barceló F; Periáñez JA; Nyhus E
    Front Hum Neurosci; 2007; 1():13. PubMed ID: 18958226
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reward expectation modulates multiple stages of auditory conflict control.
    Kang G; Chang W; Wang L; Zhou X
    Int J Psychophysiol; 2019 Dec; 146():148-156. PubMed ID: 31648025
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective attention for masked and unmasked emotionally toned stimuli: effects of trait anxiety, state anxiety, and test order.
    Edwards MS; Burt JS; Lipp OV
    Br J Psychol; 2010 May; 101(Pt 2):325-43. PubMed ID: 19709474
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acute exercise has a general facilitative effect on cognitive function: A combined ERP temporal dynamics and BDNF study.
    Chang YK; Alderman BL; Chu CH; Wang CC; Song TF; Chen FT
    Psychophysiology; 2017 Feb; 54(2):289-300. PubMed ID: 27861961
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Components of attentional bias to threat in high trait anxiety: Facilitated engagement, impaired disengagement, and attentional avoidance.
    Koster EH; Crombez G; Verschuere B; Van Damme S; Wiersema JR
    Behav Res Ther; 2006 Dec; 44(12):1757-71. PubMed ID: 16480943
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanisms of attentional selection bias for threatening emotions of anger and disgust in individuals with high-trait anxiety.
    Xia L; Cui L; Zhang Q; Dong X; Shi G
    Neuroreport; 2018 Mar; 29(4):291-300. PubMed ID: 29261562
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Long-lasting effects of performance-contingent unconscious and conscious reward incentives during cued task-switching.
    Capa RL; Bouquet CA; Dreher JC; Dufour A
    Cortex; 2013; 49(7):1943-54. PubMed ID: 22770561
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms of cross-modal selective attentional bias for negative faces of anger and disgust in high-trait anxiety individuals.
    Mao N; Xia L; Zhang Q; Li C; Cui L
    Neuroreport; 2020 Aug; 31(12):879-884. PubMed ID: 32427804
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of working memory load on cognitive control in trait anxiety: an ERP study.
    Qi S; Zeng Q; Luo Y; Duan H; Ding C; Hu W; Li H
    PLoS One; 2014; 9(11):e111791. PubMed ID: 25369121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modality-specific neural mechanisms of cognitive control in a Stroop-like task.
    Li Z; Yang G; Wu H; Li Q; Xu H; Göschl F; Nolte G; Liu X
    Brain Cogn; 2021 Feb; 147():105662. PubMed ID: 33360042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced or impoverished recruitment of top-down attentional control of inhibition in test anxiety.
    Wei H; De Beuckelaer A; Zhou R
    Biol Psychol; 2021 Apr; 161():108070. PubMed ID: 33722566
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The neural correlates of cognitive effort in anxiety: effects on processing efficiency.
    Ansari TL; Derakshan N
    Biol Psychol; 2011 Mar; 86(3):337-48. PubMed ID: 21277934
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anxiety and feedback negativity.
    Gu R; Huang YX; Luo YJ
    Psychophysiology; 2010 Sep; 47(5):961-7. PubMed ID: 20374540
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Updating sensory versus task representations during task-switching: insights from cognitive brain potentials in humans.
    Periáñez JA; Barceló F
    Neuropsychologia; 2009 Mar; 47(4):1160-72. PubMed ID: 19350711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.