These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 34242854)
1. Monte Carlo modeling of scintillation detectors for continuous underground radon monitoring. Haquin G; Zafrir H; Ilzycer D; Weisbrod N J Environ Radioact; 2021 Oct; 237():106693. PubMed ID: 34242854 [TBL] [Abstract][Full Text] [Related]
2. Contribution of atmospherical radon to in-situ scintillation gamma spectrometry data. Klusoň J; Thinová L Appl Radiat Isot; 2011 Aug; 69(8):1143-5. PubMed ID: 21129988 [TBL] [Abstract][Full Text] [Related]
3. Spectrum-dose conversion operator of NaI(Tl) and CsI(Tl) scintillation detectors for air dose rate measurement in contaminated environments. Tsuda S; Saito K J Environ Radioact; 2017 Jan; 166(Pt 3):419-426. PubMed ID: 26952947 [TBL] [Abstract][Full Text] [Related]
4. Determination of the photon spectrum of a therapeutic linear accelerator near the maze entrance: Comparison of Monte Carlo modeling and measurements using scintillation detectors corrected for pulse pile-up. Qutub MAZ; Hugtenburg RP; Al-Affan IAM Med Phys; 2020 Sep; 47(9):4522-4530. PubMed ID: 32469079 [TBL] [Abstract][Full Text] [Related]
5. MCNPX evaluation of gamma spectrometry results in high radon concentration areas. Thinová L; Solc J Radiat Prot Dosimetry; 2014 Jul; 160(1-3):87-91. PubMed ID: 24729561 [TBL] [Abstract][Full Text] [Related]
6. Energy dependent response of plastic scintillation detectors to photon radiation of low to medium energy. Ebenau M; Radeck D; Bambynek M; Sommer H; Flühs D; Spaan B; Eichmann M Med Phys; 2016 Aug; 43(8):4598. PubMed ID: 27487876 [TBL] [Abstract][Full Text] [Related]
7. Light output measurements and computational models of microcolumnar CsI scintillators for x-ray imaging. Nillius P; Klamra W; Sibczynski P; Sharma D; Danielsson M; Badano A Med Phys; 2015 Feb; 42(2):600-605. PubMed ID: 28102604 [TBL] [Abstract][Full Text] [Related]
8. A Monte Carlo Method for Determining the Response Relationship between Two Commonly Used Detectors to Indirectly Measure Alpha Particle Radiation Activity. Tichacek CJ; Budzevich MM; Wadas TJ; Morse DL; Moros EG Molecules; 2019 Sep; 24(18):. PubMed ID: 31546752 [TBL] [Abstract][Full Text] [Related]
9. Monte Carlo based calibration of scintillation detectors for laboratory and in situ gamma ray measurements. van der Graaf ER; Limburg J; Koomans RL; Tijs M J Environ Radioact; 2011 Mar; 102(3):270-82. PubMed ID: 21251733 [TBL] [Abstract][Full Text] [Related]
10. Monte Carlo simulation of the nonlinear full peak energy responses for gamma-ray scintillation detectors. Peeples JL; Gardner RP Appl Radiat Isot; 2012 Jul; 70(7):1058-62. PubMed ID: 22178700 [TBL] [Abstract][Full Text] [Related]
11. MEASUREMENT OF THE POTENTIAL ALPHA ENERGY CONCENTRATION OF RADON PROGENY BY USING LIQUID SCINTILLATION COUNTING METHOD. Feng B; Tang Q; Zhang H; Chen B; Qiu S; Zhuo W Radiat Prot Dosimetry; 2019 Oct; 184(3-4):440-443. PubMed ID: 31330010 [TBL] [Abstract][Full Text] [Related]
12. Preliminary study on the detection efficiency and estimation of minimum detectable activity for a NaI(Tl)-based seawater monitoring system. Han SY; Maeng S; Lee HY; Lee SH J Environ Radioact; 2020 Jul; 218():106222. PubMed ID: 32174443 [TBL] [Abstract][Full Text] [Related]
13. Radon measurement of natural gas using alpha scintillation cells. Kitto ME; Torres MA; Haines DK; Semkow TM J Environ Radioact; 2014 Dec; 138():205-7. PubMed ID: 25261866 [TBL] [Abstract][Full Text] [Related]
14. Primary activity measurements with 4pigamma NaI(Tl) counting and Monte Carlo calculated efficiencies. Nedjadi Y; Spring P; Bailat C; Decombaz M; Triscone G; Gostely JJ; Laedermann JP; Bochud FO Appl Radiat Isot; 2007 May; 65(5):534-8. PubMed ID: 17257850 [TBL] [Abstract][Full Text] [Related]
15. Optimization of scintillator-reflector optical interfaces for the LUT Davis model. Trigila C; Roncali E Med Phys; 2021 Sep; 48(9):4883-4899. PubMed ID: 34287943 [TBL] [Abstract][Full Text] [Related]
16. Optimized measurement of radium-226 concentration in liquid samples with radon-222 emanation. Perrier F; Aupiais J; Girault F; Przylibski TA; Bouquerel H J Environ Radioact; 2016 Jun; 157():52-9. PubMed ID: 26998570 [TBL] [Abstract][Full Text] [Related]
17. [Comparative analysis of two diffusion methods for radon Rn-222 estimation in atmospheric air by means of gamma ray spectrometry and liquid scintillation counting]. Gorzkowski B; Pachocki K; Peńsko J; Majle T; Rózycki Z Rocz Panstw Zakl Hig; 1995; 46(1):71-80. PubMed ID: 7481507 [TBL] [Abstract][Full Text] [Related]
18. Miners' exposure to radon and its decay products in some Iranian non-uranium underground mines. Fathabadi N; Ghiassi-Nejad M; Haddadi B; Moradi M Radiat Prot Dosimetry; 2006; 118(1):111-6. PubMed ID: 16081493 [TBL] [Abstract][Full Text] [Related]
19. AN ALTERNATIVE CALIBRATION OF CR-39 DETECTORS FOR RADON DETECTION BEYOND THE SATURATION LIMIT. Franci D; Aureli T; Cardellini F Radiat Prot Dosimetry; 2016 Dec; 172(4):496-500. PubMed ID: 26656081 [TBL] [Abstract][Full Text] [Related]
20. Estimation of counting efficiencies of a portable NaI detector using Monte Carlo simulation for thyroid measurement following nuclear accidents. Ha WH; Kim JK; Jin YW J Radiol Prot; 2017 Sep; 37(3):635-641. PubMed ID: 28474600 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]