These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34242985)

  • 1. Impacts of partially hydrolyzed polyacrylamide (HPAM) on microbial mats from a constructed wetland treating oilfield produced water.
    Abed RMM; Al-Fori M; Al-Sabahi J; Prigent S; Headley T
    Chemosphere; 2021 Dec; 285():131421. PubMed ID: 34242985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of partially hydrolyzed polyacrylamide (HPAM) on the bacterial communities of wetland rhizosphere soils and their efficiency in HPAM and alkane degradation.
    Abed RMM; Al-Fori M; Al-Hinai M; Al-Sabahi J; Al-Battashi H; Prigent S; Headley T
    Environ Sci Pollut Res Int; 2023 Jan; 30(4):9713-9724. PubMed ID: 36063269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity, distribution and hydrocarbon biodegradation capabilities of microbial communities in oil-contaminated cyanobacterial mats from a constructed wetland.
    Abed RM; Al-Kharusi S; Prigent S; Headley T
    PLoS One; 2014; 9(12):e114570. PubMed ID: 25514025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic biodegradation of partially hydrolyzed polyacrylamide in long-term methanogenic enrichment cultures from production water of oil reservoirs.
    Hu H; Liu JF; Li CY; Yang SZ; Gu JD; Mu BZ
    Biodegradation; 2018 Jun; 29(3):233-243. PubMed ID: 29502248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partially hydrolyzed polyacrylamide: enhanced oil recovery applications, oil-field produced water pollution, and possible solutions.
    Al-Kindi S; Al-Bahry S; Al-Wahaibi Y; Taura U; Joshi S
    Environ Monit Assess; 2022 Oct; 194(12):875. PubMed ID: 36227428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation of hydrolyzed polyacrylamide by a Bacillus megaterium strain SZK-5: Functional enzymes and antioxidant defense mechanism.
    Song T; Li S; Lu Y; Yan D; Sun P; Bao M; Li Y
    Chemosphere; 2019 Sep; 231():184-193. PubMed ID: 31129399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High temperature utilization of PAM and HPAM by microbial communities enriched from oilfield produced water and activated sludge.
    Berdugo-Clavijo C; Sen A; Seyyedi M; Quintero H; O'Neil B; Gieg LM
    AMB Express; 2019 Apr; 9(1):46. PubMed ID: 30968201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of bacterial and archaeal communities along a high-molecular-weight polyacrylamide transportation pipeline system in an oil field.
    Li CY; Li JY; Mbadinga SM; Liu JF; Gu JD; Mu BZ
    Int J Mol Sci; 2015 Apr; 16(4):7445-61. PubMed ID: 25849654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of partially hydrolyzed polyacrylamide by bacteria isolated from production water after polymer flooding in an oil field.
    Bao M; Chen Q; Li Y; Jiang G
    J Hazard Mater; 2010 Dec; 184(1-3):105-110. PubMed ID: 20813455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The biofilm property and its correlationship with high-molecular-weight polyacrylamide degradation in a water injection pipeline of Daqing oilfield.
    Li CY; Zhang D; Li XX; Mbadinga SM; Yang SZ; Liu JF; Gu JD; Mu BZ
    J Hazard Mater; 2016 Mar; 304():388-99. PubMed ID: 26595898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrolyzed polyacrylamide biotransformation in an up-flow anaerobic sludge blanket reactor system: key enzymes, functional microorganisms, and biodegradation mechanisms.
    Zhao L; Song T; Han D; Bao M; Lu J
    Bioprocess Biosyst Eng; 2019 Jun; 42(6):941-951. PubMed ID: 30820666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of hydrolyzed polyacrylamide by the combined expanded granular sludge bed reactor-aerobic biofilm reactor biosystem and key microorganisms involved in this bioprocess.
    Song T; Li S; Ding W; Li H; Bao M; Li Y
    Bioresour Technol; 2018 Sep; 263():153-162. PubMed ID: 29738978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of substrate type on microbial community structure in vertical-flow constructed wetland treating polluted river water.
    Guan W; Yin M; He T; Xie S
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):16202-9. PubMed ID: 26263887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced hydrolyzed polyacrylamide removal from water by an aerobic biofilm reactor-ozone reactor-aerobic biofilm reactor hybrid treatment system: Performance, key enzymes and functional microorganisms.
    Song T; Li S; Jin J; Yin Z; Lu Y; Bao M; Li Y
    Bioresour Technol; 2019 Nov; 291():121811. PubMed ID: 31344634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the effect of different levels of crude oil on hydrolyzed polyacrylamide biotransformation in aerobic and anoxic biosystems: Bioresource production, enzymatic activity, and microbial function.
    Zhao L; Cheng Y; Yin Z; Chen D; Bao M; Lu J
    Bioresour Technol; 2019 Dec; 293():122023. PubMed ID: 31472407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymers for enhanced oil recovery: fundamentals and selection criteria.
    Rellegadla S; Prajapat G; Agrawal A
    Appl Microbiol Biotechnol; 2017 Jun; 101(11):4387-4402. PubMed ID: 28502065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing Oil Recovery from Low-Permeability Reservoirs with a Thermoviscosifying Water-Soluble Polymer.
    Zhang X; Li B; Pan F; Su X; Feng Y
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of physico-chemical and membrane filtration processes to remove high molecular weight polymers from produced water in enhanced oil recovery operations.
    Ricceri F; Farinelli G; Giagnorio M; Zamboi A; Tiraferri A
    J Environ Manage; 2022 Jan; 302(Pt A):114015. PubMed ID: 34731710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of greenhouse gases in hyper-arid and arid areas of northern Chile and the contribution of the high altitude wetland microbiome (Salar de Huasco, Chile).
    Molina V; Eissler Y; Cornejo M; Galand PE; Dorador C; Hengst M; Fernandez C; Francois JP
    Antonie Van Leeuwenhoek; 2018 Aug; 111(8):1421-1432. PubMed ID: 29626330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epibenthic microbial mats behavior as phosphorus sinks or sources in relation to biological and physicochemical conditions.
    Perillo VL; La Colla NS; Pan J; Serra AV; Botté SE; Cuadrado DG
    J Environ Manage; 2022 Jul; 314():115079. PubMed ID: 35447453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.