These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34243090)

  • 61. Emission characteristics of dioxins, furans and polycyclic aromatic hydrocarbons during fluidized-bed combustion of sewage sludge.
    Deng W; Yan J; Li X; Wang F; Chi Y; Lu S
    J Environ Sci (China); 2009; 21(12):1747-52. PubMed ID: 20131608
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Using a high biomass plant Pennisetum hydridum to phyto-treat fresh municipal sewage sludge.
    Hei L; Lee CC; Wang H; Lin XY; Chen XH; Wu QT
    Bioresour Technol; 2016 Oct; 217():252-6. PubMed ID: 26897473
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS.
    Magdziarz A; Werle S
    Waste Manag; 2014 Jan; 34(1):174-9. PubMed ID: 24238993
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Synergistic effect of hydrothermal co-carbonization of sewage sludge with fruit and agricultural wastes on hydrochar fuel quality and combustion behavior.
    He C; Zhang Z; Ge C; Liu W; Tang Y; Zhuang X; Qiu R
    Waste Manag; 2019 Dec; 100():171-181. PubMed ID: 31541922
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Thermogravimetric analysis of biowastes during combustion.
    Otero M; Sanchez ME; Gómez X; Morán A
    Waste Manag; 2010 Jul; 30(7):1183-7. PubMed ID: 20079622
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Thermogravimetric analysis of the behavior of sub-bituminous coal and cellulosic ethanol residue during co-combustion.
    Buratti C; Barbanera M; Bartocci P; Fantozzi F
    Bioresour Technol; 2015 Jun; 186():154-162. PubMed ID: 25817025
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Thermochemical and Toxic Element Behavior during Co-Combustion of Coal and Municipal Sludge.
    Chen Y; Gui H; Xia Z; Chen X; Zheng L
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299445
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Physical and thermochemical characterization of rice husk char as a potential biomass energy source.
    Maiti S; Dey S; Purakayastha S; Ghosh B
    Bioresour Technol; 2006 Nov; 97(16):2065-70. PubMed ID: 16298126
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Co-pelletization of sewage sludge and biomass: the density and hardness of pellet.
    Jiang L; Liang J; Yuan X; Li H; Li C; Xiao Z; Huang H; Wang H; Zeng G
    Bioresour Technol; 2014 Aug; 166():435-43. PubMed ID: 24935004
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Chemical speciation, mobility and phyto-accessibility of heavy metals in fly ash and slag from combustion of pelletized municipal sewage sludge.
    Xiao Z; Yuan X; Li H; Jiang L; Leng L; Chen X; Zeng G; Li F; Cao L
    Sci Total Environ; 2015 Dec; 536():774-783. PubMed ID: 26254077
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Economic analysis on sewage sludge drying and its co-combustion in municipal solid waste power plant.
    Chen L; Liao Y; Ma X
    Waste Manag; 2021 Feb; 121():11-22. PubMed ID: 33341690
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Investigation of co-combustion characteristics of sewage sludge and coffee grounds mixtures using thermogravimetric analysis coupled to artificial neural networks modeling.
    Chen J; Liu J; He Y; Huang L; Sun S; Sun J; Chang K; Kuo J; Huang S; Ning X
    Bioresour Technol; 2017 Feb; 225():234-245. PubMed ID: 27894042
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A comparatively optimization of dosages of oxidation agents based on volatile solids and dry solids content in dewatering of sewage sludge.
    Yu W; Yang J; Tao S; Shi Y; Yu J; Lv Y; Liang S; Xiao K; Liu B; Hou H; Hu J; Wu X
    Water Res; 2017 Dec; 126():342-350. PubMed ID: 28972938
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The effect of hydrolysis on combustion characteristics of sewage sludge and leaching behavior of heavy metals.
    Ali M; Huang Q; Lin B; Hu B; Wang F; Chi Y
    Environ Technol; 2018 Oct; 39(20):2632-2640. PubMed ID: 28805503
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Thermodynamics, kinetics and thermal decomposition characteristics of sewage sludge during slow pyrolysis.
    Mphahlele K; Matjie RH; Osifo PO
    J Environ Manage; 2021 Apr; 284():112006. PubMed ID: 33535126
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Combustion of single particles from sewage sludge/pine sawdust and sewage sludge/bituminous coal under oxy-fuel conditions with steam addition.
    Lei K; Zhang R; Ye B; Cao J; Liu D
    Waste Manag; 2020 Jan; 101():1-8. PubMed ID: 31585272
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Production of a solid fuel using sewage sludge and spent cooking oil by immersion frying.
    Wu Z; Zhang J; Li Z; Xie J; Mujumdar AS
    J Hazard Mater; 2012 Dec; 243():357-63. PubMed ID: 23158688
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Optimising the preparation of activated carbon from digested sewage sludge and coconut husk.
    Tay JH; Chen XG; Jeyaseelan S; Graham N
    Chemosphere; 2001 Jul; 44(1):45-51. PubMed ID: 11419758
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Hydrogen-rich gas production via CaO sorption-enhanced steam gasification of rice husk: a modelling study.
    Beheshti SM; Ghassemi H; Shahsavan-Markadeh R; Fremaux S
    Environ Technol; 2015; 36(9-12):1327-33. PubMed ID: 25403373
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Thermogravimetric analysis of co-combustion between microalgae and textile dyeing sludge.
    Peng X; Ma X; Xu Z
    Bioresour Technol; 2015 Mar; 180():288-95. PubMed ID: 25618498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.