These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 34243297)
1. Feasibility of nuclide-identified imaging based on the back-streaming white neutron beam at the China Spallation Neutron Source. Tian B; Jing H; Wang S; Li Q; Gao X; Yang X Rev Sci Instrum; 2021 May; 92(5):053303. PubMed ID: 34243297 [TBL] [Abstract][Full Text] [Related]
2. Design of back-streaming white neutron beam line at CSNS. Zhang LY; Jing HT; Tang JY; Li Q; Ruan XC; Ren J; Ning CJ; Yu YJ; Tan ZX; Wang PC; He YC; Wang XQ Appl Radiat Isot; 2018 Feb; 132():212-221. PubMed ID: 29239757 [TBL] [Abstract][Full Text] [Related]
3. The possible use of a spallation neutron source for neutron capture therapy with epithermal neutrons. Grusell E; Condé H; Larsson B; Rönnqvist T; Sornsuntisook O; Crawford J; Reist H; Dahl B; Sjöstrand NG; Russel G Basic Life Sci; 1990; 54():249-58. PubMed ID: 2176455 [TBL] [Abstract][Full Text] [Related]
4. RESEARCH ON DOSE MONITORING IN BACKSCATTERING NEUTRON HALL IN CHINA SPALLATION NEUTRON SOURCE. Wu Q; Zhuang S; Liu Q; Jing H; Ye R; Li L; Wang Y; Wang Q Radiat Prot Dosimetry; 2020 Jul; 189(2):253-269. PubMed ID: 32239154 [TBL] [Abstract][Full Text] [Related]
5. Accelerator driven neutron source design via beryllium target and Khorshidi A J Cancer Res Ther; 2017; 13(3):456-465. PubMed ID: 28862209 [TBL] [Abstract][Full Text] [Related]
6. Validation of source biasing method for its use in CSNS beamline shielding calculation. Liang TR; Shen F; Liang TJ; Yin W; Yu QZ; Yu CX Radiat Prot Dosimetry; 2014 Dec; 162(3):208-14. PubMed ID: 24375377 [TBL] [Abstract][Full Text] [Related]
7. Analysis of Neutron Production in Passively Scattered Ion-Beam Therapy. Heo S; Yoo S; Song Y; Kim E; Shin J; Han S; Jung W; Nam S; Lee R; Lee K; Cho S Radiat Prot Dosimetry; 2017 Jul; 175(3):297-303. PubMed ID: 27885084 [TBL] [Abstract][Full Text] [Related]
8. Analysis of neutron and gamma-ray streaming along the maze of NRCAM thallium production target room. Raisali G; Hajiloo N; Hamidi S; Aslani G Appl Radiat Isot; 2006 Aug; 64(8):940-7. PubMed ID: 16713275 [TBL] [Abstract][Full Text] [Related]
9. Empirical description and Monte Carlo simulation of fast neutron pencil beams as basis of a treatment planning system. Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W Med Phys; 2002 Aug; 29(8):1670-7. PubMed ID: 12201412 [TBL] [Abstract][Full Text] [Related]
10. Monte Carlo study on secondary neutrons in passive carbon-ion radiotherapy: identification of the main source and reduction in the secondary neutron dose. Yonai S; Matsufuji N; Kanai T Med Phys; 2009 Oct; 36(10):4830-9. PubMed ID: 19928113 [TBL] [Abstract][Full Text] [Related]
11. Installation and commissioning of the ion source systems for the new spallation neutron source 2.5 MeV injector. Welton RF; Han BX; Stockli MP; Murray SN; Pennisi TR; Stinson C; Barnett W; Aleksandrov A; Piller M; Saethre R; Kang Y; Zhukov A Rev Sci Instrum; 2020 Jan; 91(1):013334. PubMed ID: 32012529 [TBL] [Abstract][Full Text] [Related]
12. Monte Carlo modeling of proton therapy installations: a global experimental method to validate secondary neutron dose calculations. Farah J; Martinetti F; Sayah R; Lacoste V; Donadille L; Trompier F; Nauraye C; De Marzi L; Vabre I; Delacroix S; Hérault J; Clairand I Phys Med Biol; 2014 Jun; 59(11):2747-65. PubMed ID: 24800943 [TBL] [Abstract][Full Text] [Related]
13. Systematic out-of-field secondary neutron spectrometry and dosimetry in pencil beam scanning proton therapy. Trinkl S; Mares V; Englbrecht FS; Wilkens JJ; Wielunski M; Parodi K; Rühm W; Hillbrand M Med Phys; 2017 May; 44(5):1912-1920. PubMed ID: 28294362 [TBL] [Abstract][Full Text] [Related]
14. Activation calculations for the target of a spallation ultra-cold neutron source at PSI. Wohlmuther M; Züllig J Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):280-3. PubMed ID: 16604644 [TBL] [Abstract][Full Text] [Related]
15. Measurement and analysis of induced activities in concrete irradiated using high-energy neutrons at KENS Neutron Spallation Source Facility. Oishi K; Nakao N; Kosako K; Yamakawa H; Nakashima H; Kawai M; Yashima H; Sanami T; Numajiri M; Shibata T; Hirayama H; Nakamura T Radiat Prot Dosimetry; 2005; 115(1-4):623-9. PubMed ID: 16381795 [TBL] [Abstract][Full Text] [Related]
16. The Fundamental Neutron Physics Beamline at the Spallation Neutron Source. Greene G; Cianciolo V; Koehler P; Allen R; Snow WM; Huffman P; Gould C; Bowman D; Cooper M; Doyle J J Res Natl Inst Stand Technol; 2005; 110(3):149-52. PubMed ID: 27308112 [TBL] [Abstract][Full Text] [Related]
17. Fast neutron absorbed dose distributions in the energy range 0.5-80 meV--a Monte Carlo study. Söderberg J; Carlsson GA Phys Med Biol; 2000 Oct; 45(10):2987-3007. PubMed ID: 11049184 [TBL] [Abstract][Full Text] [Related]
18. An experimental study of the moderator assembly for a low-energy proton accelerator neutron irradiation facility for BNCT. Wang CK; Blue TE; Blue JW Basic Life Sci; 1990; 54():271-80. PubMed ID: 2176457 [TBL] [Abstract][Full Text] [Related]
20. Development of a high energy resolution and wide dose rate range portable gamma-ray spectrometer. Wang Y; Feng C; Zhao M; Shan C; Liu F; Lei Q; Zhou Z; Liu S Appl Radiat Isot; 2023 Feb; 192():110572. PubMed ID: 36444786 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]