These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 34243317)

  • 1. Ultra-low supply voltage crystal quartz oscillator.
    Korolev AM; Shulga VM; Turutanov OG
    Rev Sci Instrum; 2021 May; 92(5):054706. PubMed ID: 34243317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage-controlled narrowband and wide, variable-range four-segment quartz crystal oscillator.
    Ruslan R; Satoh T; Akitsu T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):564-72. PubMed ID: 22481794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A parametric quartz crystal oscillator.
    Komine V; Galliou S; Makarov A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Dec; 50(12):1656-61. PubMed ID: 14761035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the impact of supply voltage fluctuations on phase noise in quartz crystal oscillators.
    Xu L; Ye P; Liao S; Chen C; Zhu G; Tan F
    Rev Sci Instrum; 2024 Aug; 95(8):. PubMed ID: 39150552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ultra-compact and low-power oven-controlled crystal oscillator design for precision timing applications.
    Lim J; Kim H; Jackson T; Choi K; Kenny D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Sep; 57(9):1906-14. PubMed ID: 20875980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Power MEMS-Based Pierce Oscillator Using a 61-MHz Capacitive-Gap Disk Resonator.
    Naing TL; Rocheleau TO; Alon E; Nguyen CT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jul; 67(7):1377-1391. PubMed ID: 31995483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Low Power Low Phase Noise Oscillator for MICS Transceivers.
    Li D; Liu D; Kang C; Zou X
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28085107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a Self-Controlled Dual-Oscillator-Based Supply Voltage Monitor for Biofuel-Cell-Combined Biosensing Systems in 65-nm CMOS and 55-nm DDC CMOS.
    Kobayashi A; Hayashi K; Arata S; Murakami S; Xu G; Niitsu K
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1152-1162. PubMed ID: 31675341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct EPR irradiation of a sample using a quartz oscillator operating at 250 MHz for EPR measurements.
    Yokoyama H
    J Magn Reson; 2012 Jan; 214(1):119-23. PubMed ID: 22088663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Note: Ultra-high frequency ultra-low dc power consumption HEMT amplifier for quantum measurements in millikelvin temperature range.
    Korolev AM; Shnyrkov VI; Shulga VM
    Rev Sci Instrum; 2011 Jan; 82(1):016101. PubMed ID: 21280864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis and Validation of Contactless Time-Gated Interrogation Technique for Quartz Resonator Sensors.
    Baù M; Ferrari M; Ferrari V
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28574459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New phase-noise model for crystal oscillators: application to the Clapp oscillator.
    Galliou S; Sthal F; Mourey M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1422-8. PubMed ID: 14682625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity and Accuracy of Dielectric Measurements of Liquids Significantly Improved by Coupled Capacitive-Dependent Quartz Crystals.
    Matko V; Milanovič M
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34065458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting phase noise in crystal oscillators.
    Sthal F; Galliou S; Gufflet N; Mourey M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jan; 52(1):27-30. PubMed ID: 15747420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High voltage DC power supply with power factor correction based on LLC resonant converter.
    Abid M; Ahmad F; Ullah F; Habib U; Nawaz S; Iqbal M; Farooq A
    PLoS One; 2020; 15(9):e0239008. PubMed ID: 32956410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Wideband Oscillator Exploiting Multiple Resonances in Lithium Niobate MEMS Resonator.
    Kourani A; Lu R; Gong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Sep; 67(9):1854-1866. PubMed ID: 32324549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Adaptive Measurement System for the Simultaneous Evaluation of Frequency Shift and Series Resistance of QCM in Liquid.
    Fort A; Panzardi E; Vignoli V; Tani M; Landi E; Mugnaini M; Vaccarella P
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A low-phase-noise Ka-band push-push voltage-controlled oscillator using CMOS/glass-integrated passive device technologies.
    Wang S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Sep; 61(9):1456-62. PubMed ID: 25167145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radio Frequency Tunable Oscillator Device Based on a SmB_{6} Microcrystal.
    Stern A; Efimkin DK; Galitski V; Fisk Z; Xia J
    Phys Rev Lett; 2016 Apr; 116(16):166603. PubMed ID: 27152816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sub-nW 2.4 GHz Transmitter for Low Data-Rate Sensing Applications.
    Mercier PP; Bandyopadhyay S; Lysaght AC; Stankovic KM; Chandrakasan AP
    IEEE J Solid-State Circuits; 2014 Jul; 49(7):1463-1474. PubMed ID: 26246641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.