BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34243339)

  • 1. A low-noise analog frontend design for the Taiji phasemeter prototype.
    Liu HS; Yu T; Luo ZR
    Rev Sci Instrum; 2021 May; 92(5):054501. PubMed ID: 34243339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evaluation of phasemeter prototype performance for the space gravitational waves detection.
    Liu HS; Dong YH; Li YQ; Luo ZR; Jin G
    Rev Sci Instrum; 2014 Feb; 85(2):024503. PubMed ID: 24593376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on TPD Phasemeter to Suppress Low-Frequency Amplitude Fluctuation and Improve Fast-Acquiring Range for GW Detection.
    Ming M; Zhang J; Duan H; Li Z; Huang X; Tu L; Yeh HC
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced inter-spacecraft offset frequency setting strategy for the Taiji program based on a two-stage optimization algorithm.
    Zhang J; Ma X; Zhao M; Peng X; Gao C; Yang Z
    Appl Opt; 2023 Jun; 62(16):4370-4380. PubMed ID: 37706930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Note: A new method for directly reducing the sampling jitter noise of the digital phasemeter.
    Liang YR
    Rev Sci Instrum; 2018 Mar; 89(3):036106. PubMed ID: 29604779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Detection Precision of the Taiji Program by Frequency Setting Strategy Based on a Hierarchical Optimization Algorithm.
    Zhang J; Yang Z; Ma X; Peng X; Gao C; Zhao M; Tang W
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Construction of the Optical Bench Interferometer for the Taiji Program.
    Tao W; Deng X; Diao Y; Gao R; Qi K; Wang S; Luo Z; Sha W; Liu H
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Readout for intersatellite laser interferometry: Measuring low frequency phase fluctuations of high-frequency signals with microradian precision.
    Gerberding O; Diekmann C; Kullmann J; Tröbs M; Bykov I; Barke S; Brause NC; Esteban Delgado JJ; Schwarze TS; Reiche J; Danzmann K; Rasmussen T; Hansen TV; Enggaard A; Pedersen SM; Jennrich O; Suess M; Sodnik Z; Heinzel G
    Rev Sci Instrum; 2015 Jul; 86(7):074501. PubMed ID: 26233398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A phasemeter concept for space applications that integrates an autonomous signal acquisition stage based on the discrete wavelet transform.
    Ales F; Mandel O; Gath P; Johann U; Braxmaier C
    Rev Sci Instrum; 2015 Aug; 86(8):084502. PubMed ID: 26329214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a phasemeter for real-time measurements of the average plasma density with the microwave interferometer of the tokamak T-15MD.
    Drozd A; Sergeev D
    Rev Sci Instrum; 2022 Jun; 93(6):063501. PubMed ID: 35778047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constant amplitude modulation heterodyne interferometry.
    Liu H; Wang J; Gao R; Luo Z
    Appl Opt; 2022 Oct; 61(28):8493-8499. PubMed ID: 36256165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Picometer-Stable Hexagonal Optical Bench to Verify LISA Phase Extraction Linearity and Precision.
    Schwarze TS; Fernández Barranco G; Penkert D; Kaufer M; Gerberding O; Heinzel G
    Phys Rev Lett; 2019 Mar; 122(8):081104. PubMed ID: 30932596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental scheme and noise analysis of weak-light phase locked loop for large-scale intersatellite laser interferometer.
    Liang YR; Feng YJ; Xiao GY; Jiang YZ; Li L; Jin XL
    Rev Sci Instrum; 2021 Dec; 92(12):124501. PubMed ID: 34972474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shot-noise-limit performance of a weak-light phase readout system for intersatellite heterodyne interferometry.
    Jiang YZ; Jin XL; Yeh HC; Liang YR
    Opt Express; 2021 Jun; 29(12):18336-18350. PubMed ID: 34154092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-frequency signal acquisition and phase measurement in space gravitational wave detection.
    Zhang QT; Liu HS; Dong P; Li P; Luo ZR
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38743572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inter-spacecraft offset frequency setting strategy in the Taiji program.
    Zhang J; Yang Z; Ma X; Peng X; Liu H; Tang W; Zhao M; Gao C; Qiang LE; Han X; Liu B
    Appl Opt; 2022 Jan; 61(3):837-843. PubMed ID: 35200792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the Effect of Micro-Force Perturbations and Temperature Fluctuation on Interferometer for the Taiji Program.
    Wang J; Liu HS; Yang C; Qi KQ; Luo ZR; Yang R
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-linear quantization error reduction for the temperature measurement subsystem on-board LISA Pathfinder.
    Sanjuan J; Nofrarias M
    Rev Sci Instrum; 2018 Apr; 89(4):045004. PubMed ID: 29716339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High resolution space quartz-flexure accelerometer based on capacitive sensing and electrostatic control technology.
    Tian W; Wu SC; Zhou ZB; Qu SB; Bai YZ; Luo J
    Rev Sci Instrum; 2012 Sep; 83(9):095002. PubMed ID: 23020407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time jitter correction in a photonic analog-to-digital converter.
    Olson J; Perlmutter DS; DeVore PTS; Chou JT
    Opt Lett; 2020 Sep; 45(18):5089-5092. PubMed ID: 32932460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.