These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 34243358)
1. Research on unknown fault diagnosis of rolling bearings based on parameter-adaptive maximum correlation kurtosis deconvolution. He Y; Wang H; Xue H; Zhang T Rev Sci Instrum; 2021 May; 92(5):055103. PubMed ID: 34243358 [TBL] [Abstract][Full Text] [Related]
2. Early Fault Detection of Rolling Bearings Based on Time-Varying Filtering Empirical Mode Decomposition and Adaptive Multipoint Optimal Minimum Entropy Deconvolution Adjusted. Song S; Wang W Entropy (Basel); 2023 Oct; 25(10):. PubMed ID: 37895573 [TBL] [Abstract][Full Text] [Related]
3. Early Fault Diagnosis of Bearings Using an Improved Spectral Kurtosis by Maximum Correlated Kurtosis Deconvolution. Jia F; Lei Y; Shan H; Lin J Sensors (Basel); 2015 Nov; 15(11):29363-77. PubMed ID: 26610501 [TBL] [Abstract][Full Text] [Related]
4. Compound Fault Feature Extraction of Rolling Bearing Acoustic Signals Based on AVMD-IMVO-MCKD. Wu S; Zhou J; Liu T Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146118 [TBL] [Abstract][Full Text] [Related]
5. Particle swarm optimization algorithm to solve the deconvolution problem for rolling element bearing fault diagnosis. Cheng Y; Wang Z; Zhang W; Huang G ISA Trans; 2019 Jul; 90():244-267. PubMed ID: 30732991 [TBL] [Abstract][Full Text] [Related]
6. An improved complementary ensemble empirical mode decomposition with adaptive noise and its application to rolling element bearing fault diagnosis. Cheng Y; Wang Z; Chen B; Zhang W; Huang G ISA Trans; 2019 Aug; 91():218-234. PubMed ID: 30738582 [TBL] [Abstract][Full Text] [Related]
7. Fault Feature Extraction Method for Rolling Bearings Based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Variational Mode Decomposition. Wang L; Li H; Xi T; Wei S Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067814 [TBL] [Abstract][Full Text] [Related]
8. An improved Autogram and MOMEDA method to detect weak compound fault in rolling bearings. Xie X; Yang Z; Zhang L; Zeng G; Wang X; Zhang P; Chen G Math Biosci Eng; 2022 Jul; 19(10):10424-10444. PubMed ID: 36032001 [TBL] [Abstract][Full Text] [Related]
9. An enhanced rolling bearing fault detection method combining sparse code shrinkage denoising with fast spectral correlation. Li J; Yu Q; Wang X; Zhang Y ISA Trans; 2020 Jul; 102():335-346. PubMed ID: 32122637 [TBL] [Abstract][Full Text] [Related]
10. The Shock Pulse Index and Its Application in the Fault Diagnosis of Rolling Element Bearings. Sun P; Liao Y; Lin J Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28282883 [TBL] [Abstract][Full Text] [Related]
11. Blind Deconvolution Based on Correlation Spectral Negentropy for Bearing Fault. Tian T; Tang GJ; Tian YC; Wang XL Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981430 [TBL] [Abstract][Full Text] [Related]
12. Identification of mechanical compound-fault based on the improved parameter-adaptive variational mode decomposition. Miao Y; Zhao M; Lin J ISA Trans; 2019 Jan; 84():82-95. PubMed ID: 30342812 [TBL] [Abstract][Full Text] [Related]
13. Fault Diagnosis for Rolling Bearings Using Optimized Variational Mode Decomposition and Resonance Demodulation. Zhang C; Wang Y; Deng W Entropy (Basel); 2020 Jul; 22(7):. PubMed ID: 33286510 [TBL] [Abstract][Full Text] [Related]
14. Fault diagnosis method of rolling bearings based on adaptive modified CEEMD and 1DCNN model. Gao S; Li T; Zhang Y; Pei Z ISA Trans; 2023 Sep; 140():309-330. PubMed ID: 37353365 [TBL] [Abstract][Full Text] [Related]
15. Multi-objective iterative optimization algorithm based optimal wavelet filter selection for multi-fault diagnosis of rolling element bearings. Ding C; Zhao M; Lin J; Jiao J ISA Trans; 2019 May; 88():199-215. PubMed ID: 30578001 [TBL] [Abstract][Full Text] [Related]
16. Fault Diagnosis for Rolling Bearing of Combine Harvester Based on Composite-Scale-Variable Dispersion Entropy and Self-Optimization Variational Mode Decomposition Algorithm. Jiang W; Shan Y; Xue X; Ma J; Chen Z; Zhang N Entropy (Basel); 2023 Jul; 25(8):. PubMed ID: 37628141 [TBL] [Abstract][Full Text] [Related]
17. A New Method Based on Time-Varying Filtering Intrinsic Time-Scale Decomposition and General Refined Composite Multiscale Sample Entropy for Rolling-Bearing Feature Extraction. Ma J; Han S; Li C; Zhan L; Zhang GZ Entropy (Basel); 2021 Apr; 23(4):. PubMed ID: 33920417 [TBL] [Abstract][Full Text] [Related]
18. Weak Fault Feature Extraction of Rolling Bearings Based on Adaptive Variational Modal Decomposition and Multiscale Fuzzy Entropy. Lv Z; Han S; Peng L; Yang L; Cao Y Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746283 [TBL] [Abstract][Full Text] [Related]
19. A novel rolling bearing fault diagnosis method based on parameter optimization variational mode decomposition with feature weighted reconstruction and multi-target attention convolutional neural networks under small samples. Hu C; Li Y; Chen Z; Men Z Rev Sci Instrum; 2023 Jul; 94(7):. PubMed ID: 37504502 [TBL] [Abstract][Full Text] [Related]
20. Application of EEMD and improved frequency band entropy in bearing fault feature extraction. Li H; Liu T; Wu X; Chen Q ISA Trans; 2019 May; 88():170-185. PubMed ID: 30558907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]