These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 34243384)

  • 1. A large fixed bed reactor for MRI operando experiments at elevated temperature and pressure.
    Ridder H; Sinn C; Pesch GR; Ilsemann J; Dreher W; Thöming J
    Rev Sci Instrum; 2021 Apr; 92(4):043711. PubMed ID: 34243384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A reactor for high-throughput high-pressure nuclear magnetic resonance spectroscopy.
    Beach NJ; Knapp SM; Landis CR
    Rev Sci Instrum; 2015 Oct; 86(10):104101. PubMed ID: 26520969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ and operando study of catalysts during high-temperature high-pressure catalysis in a fixed-bed plug flow reactor with x-ray absorption spectroscopy.
    Tang Y; Nguyen L; Li Y; Tao F
    Rev Sci Instrum; 2023 May; 94(5):. PubMed ID: 37255372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variable Temperature and Pressure Operando MAS NMR for Catalysis Science and Related Materials.
    Jaegers NR; Mueller KT; Wang Y; Hu JZ
    Acc Chem Res; 2020 Mar; 53(3):611-619. PubMed ID: 31927984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Operando Nuclear Magnetic Resonance (NMR) Studies of a Trickle-bed Reactor Using D-T2 Correlations.
    Sparks A; Gladden L; Brennan C; Mantle M
    Chimia (Aarau); 2024 Mar; 78(3):129-134. PubMed ID: 38547014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual reactor for in situ/operando fluorescent mode XAS studies of sample containing low-concentration 3d or 5d metal elements.
    Nguyen L; Tang Y; Li Y; Zhang X; Wang D; Tao FF
    Rev Sci Instrum; 2018 May; 89(5):054103. PubMed ID: 29864830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous-flow reactor setup for operando x-ray absorption spectroscopy of high pressure heterogeneous liquid-solid catalytic processes.
    Deschner BJ; Doronkin DE; Sheppard TL; Rabsch G; Grunwaldt JD; Dittmeyer R
    Rev Sci Instrum; 2021 Dec; 92(12):124101. PubMed ID: 34972445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance and characteristics of a high pressure, high temperature capillary cell with facile construction for operando x-ray absorption spectroscopy.
    Bansode A; Guilera G; Cuartero V; Simonelli L; Avila M; Urakawa A
    Rev Sci Instrum; 2014 Aug; 85(8):084105. PubMed ID: 25173285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Longitudinal Relaxation (
    Ridder H; Sinn C; Pesch GR; Dreher W; Thöming J
    ACS Meas Sci Au; 2022 Oct; 2(5):449-456. PubMed ID: 36785657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic studies of CO
    Hubble RA; Lim JY; Dennis JS
    Faraday Discuss; 2016 Oct; 192():529-544. PubMed ID: 27470202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping Temperature Heterogeneities during Catalytic CO
    Jacobs TS; van Swieten TP; Vonk SJW; Bosman IP; Melcherts AEM; Janssen BC; Janssens JCL; Monai M; Meijerink A; Rabouw FT; van der Stam W; Weckhuysen BM
    ACS Nano; 2023 Oct; 17(20):20053-20061. PubMed ID: 37797269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical kinetics for operando electron microscopy of catalysts: 3D modeling of gas and temperature distributions during catalytic reactions.
    Vincent JL; Vance JW; Langdon JT; Miller BK; Crozier PA
    Ultramicroscopy; 2020 Nov; 218():113080. PubMed ID: 32795882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water distribution in a sorption enhanced methanation reactor by time resolved neutron imaging.
    Borgschulte A; Delmelle R; Duarte RB; Heel A; Boillat P; Lehmann E
    Phys Chem Chem Phys; 2016 Jun; 18(26):17217-23. PubMed ID: 26791100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determining pH at elevated pressure and temperature using in situ ¹³C NMR.
    Surface JA; Wang F; Zhu Y; Hayes SE; Giammar DE; Conradi MS
    Environ Sci Technol; 2015 Feb; 49(3):1631-8. PubMed ID: 25588145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel high-temperature MAS probe with optimized temperature gradient across sample rotor for in-situ monitoring of high-temperature high-pressure chemical reactions.
    Mehta HS; Chen Y; Sears JA; Walter ED; Campos M; Kothandaraman J; Heldebrant DJ; Hoyt DW; Mueller KT; Washton NM
    Solid State Nucl Magn Reson; 2019 Oct; 102():31-35. PubMed ID: 31295629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CFD Development of a Silica Membrane Reactor during HI Decomposition Reaction Coupling with CO
    Alinejad MM; Ghasemzadeh K; Iulianelli A; Liguori S; Ghahremani M
    Nanomaterials (Basel); 2022 Feb; 12(5):. PubMed ID: 35269312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactor for tracking catalyst nanoparticles in liquid at high temperature under a high-pressure gas phase with X-ray absorption spectroscopy.
    Nguyen L; Tao FF
    Rev Sci Instrum; 2018 Feb; 89(2):024102. PubMed ID: 29495804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-purpose high-pressure and high temperature gas-flow cell for operando optical Raman spectroscopy.
    Yang C; Huang W; Wei H; Xu W; Marcelli A
    Rev Sci Instrum; 2021 Nov; 92(11):113003. PubMed ID: 34852550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective bulk and surface temperatures of the catalyst bed of FT-IR cells used for in situ and operando studies.
    Li H; Rivallan M; Thibault-Starzyk F; Travert A; Meunier FC
    Phys Chem Chem Phys; 2013 May; 15(19):7321-7. PubMed ID: 23576134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.