These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34243423)

  • 1. Investigation of sooting flames by color-ratio pyrometry with a consumer-grade DSLR camera.
    Sankaranarayanan A; Swami U; Sasidharakurup R; Chowdhury A; Kumbhakarna N
    Rev Sci Instrum; 2021 Apr; 92(4):044905. PubMed ID: 34243423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Digital camera measurements of soot temperature and soot volume fraction in axisymmetric flames.
    Guo H; Castillo JA; Sunderland PB
    Appl Opt; 2013 Nov; 52(33):8040-7. PubMed ID: 24513755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of soot self-absorption on color-ratio pyrometry in laminar coflow diffusion flames.
    Kempema NJ; Long MB
    Opt Lett; 2018 Mar; 43(5):1103-1106. PubMed ID: 29489790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman spectroscopy, mobility size and radiative emissions data for soot formed at increasing temperature and equivalence ratio in flames hotter than conventional combustion applications.
    Dasappa S; Camacho J
    Data Brief; 2021 Jun; 36():107064. PubMed ID: 34026968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-wavelength broadband soot pyrometry technique for axisymmetric flames.
    Cruz JJ; Escudero F; Álvarez E; Figueira da Silva LF; Carvajal G; Thomsen M; Fuentes A
    Opt Lett; 2021 Jun; 46(11):2654-2657. PubMed ID: 34061080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of FRAME for Simultaneous LIF and LII Imaging in Sooting Flames Using a Single Camera.
    Mishra YN; Boggavarapu P; Chorey D; Zigan L; Will S; Deshmukh D; Rayavarapu R
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A small porous-plug burner for studies of combustion chemistry and soot formation.
    Campbell MF; Schrader PE; Catalano AL; Johansson KO; Bohlin GA; Richards-Henderson NK; Kliewer CJ; Michelsen HA
    Rev Sci Instrum; 2017 Dec; 88(12):125106. PubMed ID: 29289223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infrared spectral soot emission for robust and high-fidelity flame thermometry.
    Ma L; Du W; Wen D; Wang Y
    Opt Lett; 2023 Feb; 48(4):980-983. PubMed ID: 36790994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Candle flame soot sizing by planar time-resolved laser-induced incandescence.
    Verdugo I; Cruz JJ; Álvarez E; Reszka P; Figueira da Silva LF; Fuentes A
    Sci Rep; 2020 Jul; 10(1):11364. PubMed ID: 32647154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-color pyrometry system to eliminate optical errors for spatially resolved measurements in flames.
    Reggeti SA; Agrawal AK; Bittle JA
    Appl Opt; 2019 Nov; 58(32):8905-8913. PubMed ID: 31873674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thin-filament pyrometry with a digital still camera.
    Maun JD; Sunderland PB; Urban DL
    Appl Opt; 2007 Feb; 46(4):483-8. PubMed ID: 17230239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative 2D thermometry in turbulent sooting non-premixed flames using filtered Rayleigh scattering.
    Pu J; Sutton JA
    Appl Opt; 2021 Jul; 60(19):5742-5751. PubMed ID: 34263870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional two-wavelength emission technique for soot diagnostics.
    Cignoli F; De Iuliis S; Manta V; Zizak G
    Appl Opt; 2001 Oct; 40(30):5370-8. PubMed ID: 18364816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning-assisted soot temperature and volume fraction fields predictions in the ethylene laminar diffusion flames.
    Ren T; Zhou Y; Wang Q; Liu H; Li Z; Zhao C
    Opt Express; 2021 Jan; 29(2):1678-1693. PubMed ID: 33726377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence.
    Ni T; Pinson JA; Gupta S; Santoro RJ
    Appl Opt; 1995 Oct; 34(30):7083-91. PubMed ID: 21060570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of high dynamic range imaging for quantitative combustion diagnostics.
    Giassi D; Liu B; Long MB
    Appl Opt; 2015 May; 54(14):4580-8. PubMed ID: 25967519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrene measurements in sooting low pressure methane flames by jet-cooled laser-induced fluorescence.
    Wartel M; Pauwels JF; Desgroux P; Mercier X
    J Phys Chem A; 2011 Dec; 115(49):14153-62. PubMed ID: 22029528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous soot multi-parameter fields predictions in laminar sooting flames from neural network-based flame luminosity measurement I: methodology.
    Wang Q; Li Z; Sun Z; Liu H; Cai W; Yao M
    Opt Lett; 2021 Aug; 46(16):3869-3872. PubMed ID: 34388762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-FTIR study of soot chemical composition-evidence of aliphatic hydrocarbons on nascent soot surfaces.
    Cain JP; Gassman PL; Wang H; Laskin A
    Phys Chem Chem Phys; 2010; 12(20):5206-18. PubMed ID: 21491682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarization spectroscopy applied to the detection of trace constituents in sooting combustion.
    Walewski JW; Nyholm K; Dreizler A; Aldén M
    Appl Spectrosc; 2004 Feb; 58(2):238-42. PubMed ID: 17140484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.