These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34243500)

  • 1. Noise investigation of an electrostatic accelerometer by a high-voltage levitation method combined with a translation-tilt compensation pendulum bench.
    Hu S; Pei S; Hu M; Bai Y; Li H; Liu L; Yang B; Wu S; Zhou Z
    Rev Sci Instrum; 2021 Jun; 92(6):064502. PubMed ID: 34243500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and validation of a high-voltage levitation circuit for electrostatic accelerometers.
    Li G; Wu SC; Zhou ZB; Bai YZ; Hu M; Luo J
    Rev Sci Instrum; 2013 Dec; 84(12):125004. PubMed ID: 24387459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High resolution space quartz-flexure accelerometer based on capacitive sensing and electrostatic control technology.
    Tian W; Wu SC; Zhou ZB; Qu SB; Bai YZ; Luo J
    Rev Sci Instrum; 2012 Sep; 83(9):095002. PubMed ID: 23020407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-calibration method of the bias of a space electrostatic accelerometer.
    Qu SB; Xia XM; Bai YZ; Wu SC; Zhou ZB
    Rev Sci Instrum; 2016 Nov; 87(11):114502. PubMed ID: 27910446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Fabrication of a Differential Electrostatic Accelerometer for Space-Station Testing of the Equivalence Principle.
    Han F; Liu T; Li L; Wu Q
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27517927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bias Stability Investigation of a Triaxial Navigation-Compatible Accelerometer with an Electrostatic Spring.
    Chen D; Bai Y; Wang C; Wu S; Xiao C; Yu J; Zhou Z
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and compensation of quadratic terms of a space electrostatic accelerometer.
    Ma Y; Bai YZ; Li HY; Zhou ZB; Zhou Z
    Rev Sci Instrum; 2018 Nov; 89(11):114502. PubMed ID: 30501275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A torque type full tensor gravity gradiometer based on a flexure-strip suspension.
    Zhang TX; Bai YZ; Hong W; Ma Y; Qu SB; Yu LH; Wu SC; Zhou ZB
    Rev Sci Instrum; 2020 Jun; 91(6):064501. PubMed ID: 32611009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gyro-Free Inertial Navigation Systems Based on Linear Opto-Mechanical Accelerometers.
    Sanjuan J; Sinyukov A; Warrayat MF; Guzman F
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research and Development of Electrostatic Accelerometers for Space Science Missions at HUST.
    Bai Y; Li Z; Hu M; Liu L; Qu S; Tan D; Tu H; Wu S; Yin H; Li H; Zhou Z
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28832538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments.
    Yan S; Xie Y; Zhang M; Deng Z; Tu L
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29156587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Locking Avoidance and Stiffness Compensation of a Three-Axis Micromachined Electrostatically Suspended Accelerometer.
    Yin Y; Sun B; Han F
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27213376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Ground-Based Electrostatically Suspended Accelerometer.
    Liu H; He X; Wu C; Zhang R
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Achieving geodetic motion for LISA test masses: ground testing results.
    Carbone L; Cavalleri A; Dolesi R; Hoyle CD; Hueller M; Vitale S; Weber WJ
    Phys Rev Lett; 2003 Oct; 91(15):151101. PubMed ID: 14611459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Low-Noise DC seismic accelerometer based on a combination of MET/MEMS sensors.
    Neeshpapa A; Antonov A; Agafonov V
    Sensors (Basel); 2014 Dec; 15(1):365-81. PubMed ID: 25549175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on Misalignment Angle Compensation during Scale Factor Matching for Two Pairs of Accelerometers in a Gravity Gradient Instrument.
    Huang X; Deng Z; Xie Y; Fan J; Hu C; Tu L
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29670021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the Method of Charge Accumulation Suppression of Electrostatic Suspended Accelerometer.
    Dai J; Wang W; Wu B; Ye L; Song K
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Model of Gravity Vector Measurement Noise for Estimating Accelerometer Bias in Gravity Disturbance Compensation.
    Tie J; Cao J; Chang L; Cai S; Wu M; Lian J
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29547552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A compound pendulum for thrust measurement of micro-Newton thruster.
    Xu H; Gao Y; Mao QB; Ye LW; Hu ZK; Zhang K; Song P; Li Q
    Rev Sci Instrum; 2022 Jun; 93(6):064501. PubMed ID: 35778050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A MEMS Electrochemical Angular Accelerometer Leveraging Silicon-Based Three-Electrode Structure.
    Chen M; Zhong A; Lu Y; Chen J; Chen D; Wang J
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.