These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34244208)

  • 1. Deep learning algorithms for automatic detection of pterygium using anterior segment photographs from slit-lamp and hand-held cameras.
    Fang X; Deshmukh M; Chee ML; Soh ZD; Teo ZL; Thakur S; Goh JHL; Liu YC; Husain R; Mehta JS; Wong TY; Cheng CY; Rim TH; Tham YC
    Br J Ophthalmol; 2022 Dec; 106(12):1642-1647. PubMed ID: 34244208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of Referable Horizontal Strabismus in Children's Primary Gaze Photographs Using Deep Learning.
    Zheng C; Yao Q; Lu J; Xie X; Lin S; Wang Z; Wang S; Fan Z; Qiao T
    Transl Vis Sci Technol; 2021 Jan; 10(1):33. PubMed ID: 33532144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs.
    Phene S; Dunn RC; Hammel N; Liu Y; Krause J; Kitade N; Schaekermann M; Sayres R; Wu DJ; Bora A; Semturs C; Misra A; Huang AE; Spitze A; Medeiros FA; Maa AY; Gandhi M; Corrado GS; Peng L; Webster DR
    Ophthalmology; 2019 Dec; 126(12):1627-1639. PubMed ID: 31561879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated multidimensional deep learning platform for referable diabetic retinopathy detection: a multicentre, retrospective study.
    Zhang G; Lin JW; Wang J; Ji J; Cen LP; Chen W; Xie P; Zheng Y; Xiong Y; Wu H; Li D; Ng TK; Pang CP; Zhang M
    BMJ Open; 2022 Jul; 12(7):e060155. PubMed ID: 35902186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Referral for disease-related visual impairment using retinal photograph-based deep learning: a proof-of-concept, model development study.
    Tham YC; Anees A; Zhang L; Goh JHL; Rim TH; Nusinovici S; Hamzah H; Chee ML; Tjio G; Li S; Xu X; Goh R; Tang F; Cheung CY; Wang YX; Nangia V; Jonas JB; Gopinath B; Mitchell P; Husain R; Lamoureux E; Sabanayagam C; Wang JJ; Aung T; Liu Y; Wong TY; Cheng CY
    Lancet Digit Health; 2021 Jan; 3(1):e29-e40. PubMed ID: 33735066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of a Deep Learning System in Pterygium Grading and Further Prediction of Recurrence with Slit Lamp Photographs.
    Hung KH; Lin C; Roan J; Kuo CF; Hsiao CH; Tan HY; Chen HC; Ma DH; Yeh LK; Lee OK
    Diagnostics (Basel); 2022 Apr; 12(4):. PubMed ID: 35453936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening and identifying hepatobiliary diseases through deep learning using ocular images: a prospective, multicentre study.
    Xiao W; Huang X; Wang JH; Lin DR; Zhu Y; Chen C; Yang YH; Xiao J; Zhao LQ; Li JO; Cheung CY; Mise Y; Guo ZY; Du YF; Chen BB; Hu JX; Zhang K; Lin XS; Wen W; Liu YZ; Chen WR; Zhong YS; Lin HT
    Lancet Digit Health; 2021 Feb; 3(2):e88-e97. PubMed ID: 33509389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate detection and grading of pterygium through smartphone by a fusion training model.
    Liu Y; Xu C; Wang S; Chen Y; Lin X; Guo S; Liu Z; Wang Y; Zhang H; Guo Y; Huang C; Wu H; Li Y; Chen Q; Hu J; Luo Z; Liu Z
    Br J Ophthalmol; 2024 Feb; 108(3):336-342. PubMed ID: 36858799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes.
    Ting DSW; Cheung CY; Lim G; Tan GSW; Quang ND; Gan A; Hamzah H; Garcia-Franco R; San Yeo IY; Lee SY; Wong EYM; Sabanayagam C; Baskaran M; Ibrahim F; Tan NC; Finkelstein EA; Lamoureux EL; Wong IY; Bressler NM; Sivaprasad S; Varma R; Jonas JB; He MG; Cheng CY; Cheung GCM; Aung T; Hsu W; Lee ML; Wong TY
    JAMA; 2017 Dec; 318(22):2211-2223. PubMed ID: 29234807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Analysis of Vision Transformers and Conventional Convolutional Neural Networks in Detecting Referable Diabetic Retinopathy.
    Goh JHL; Ang E; Srinivasan S; Lei X; Loh J; Quek TC; Xue C; Xu X; Liu Y; Cheng CY; Rajapakse JC; Tham YC
    Ophthalmol Sci; 2024; 4(6):100552. PubMed ID: 39165694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a deep learning-based image quality control system to detect and filter out ineligible slit-lamp images: A multicenter study.
    Li Z; Jiang J; Chen K; Zheng Q; Liu X; Weng H; Wu S; Chen W
    Comput Methods Programs Biomed; 2021 May; 203():106048. PubMed ID: 33765481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and validation of deep learning algorithms for automated eye laterality detection with anterior segment photography.
    Zheng C; Xie X; Wang Z; Li W; Chen J; Qiao T; Qian Z; Liu H; Liang J; Chen X
    Sci Rep; 2021 Jan; 11(1):586. PubMed ID: 33436781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.
    Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR
    JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pterygia measurements are more accurate with anterior segment optical coherence tomography - a pilot study.
    Welch MN; Reilly CD; Kalwerisky K; Johnson A; Waller SG
    Nepal J Ophthalmol; 2011; 3(1):9-12. PubMed ID: 21505540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning-based detection and stage grading for optimising diagnosis of diabetic retinopathy.
    Wang Y; Yu M; Hu B; Jin X; Li Y; Zhang X; Zhang Y; Gong D; Wu C; Zhang B; Yang J; Li B; Yuan M; Mo B; Wei Q; Zhao J; Ding D; Yang J; Li X; Yu W; Chen Y
    Diabetes Metab Res Rev; 2021 May; 37(4):e3445. PubMed ID: 33713564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a deep learning system for the joint automated detection of diabetic retinopathy and age-related macular degeneration.
    González-Gonzalo C; Sánchez-Gutiérrez V; Hernández-Martínez P; Contreras I; Lechanteur YT; Domanian A; van Ginneken B; Sánchez CI
    Acta Ophthalmol; 2020 Jun; 98(4):368-377. PubMed ID: 31773912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and validation of a deep-learning algorithm for the detection of neovascular age-related macular degeneration from colour fundus photographs.
    Keel S; Li Z; Scheetz J; Robman L; Phung J; Makeyeva G; Aung K; Liu C; Yan X; Meng W; Guymer R; Chang R; He M
    Clin Exp Ophthalmol; 2019 Nov; 47(8):1009-1018. PubMed ID: 31215760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Automated Grading System for Detection of Vision-Threatening Referable Diabetic Retinopathy on the Basis of Color Fundus Photographs.
    Li Z; Keel S; Liu C; He Y; Meng W; Scheetz J; Lee PY; Shaw J; Ting D; Wong TY; Taylor H; Chang R; He M
    Diabetes Care; 2018 Dec; 41(12):2509-2516. PubMed ID: 30275284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proposal and validation of a new grading system for pterygium (SLIT2).
    Ting DSJ; Liu YC; Patil M; Ji AJS; Fang XL; Tham YC; Lee YF; Htoon HM; Mehta JS
    Br J Ophthalmol; 2021 Jul; 105(7):921-924. PubMed ID: 32788329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research on an Intelligent Lightweight-Assisted Pterygium Diagnosis Model Based on Anterior Segment Images.
    Zheng B; Liu Y; He K; Wu M; Jin L; Jiang Q; Zhu S; Hao X; Wang C; Yang W
    Dis Markers; 2021; 2021():7651462. PubMed ID: 34367378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.