These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34244349)

  • 1. Cryosectioning and Immunostaining of
    Ossipova O; Sokol SY
    Cold Spring Harb Protoc; 2021 Sep; 2021(9):pdb.prot107151. PubMed ID: 34244349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Hybridization Combined with Immunohistochemistry in Cryosectioned Zebrafish Embryos.
    Wang J; Chai R; Fang X; Gu J; Xu W; Chen Q; Chen G; Zhu S; Jin Y
    J Vis Exp; 2022 Mar; (181):. PubMed ID: 35311829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing Primary Neurogenesis in Xenopus Embryos Using Immunostaining.
    Zhang S; Li J; Lea R; Amaya E
    J Vis Exp; 2016 Apr; (110):e53949. PubMed ID: 27166855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xenopus in revealing developmental toxicity and modeling human diseases.
    Gao J; Shen W
    Environ Pollut; 2021 Jan; 268(Pt B):115809. PubMed ID: 33096388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence In Situ Hybridization of Cryosectioned
    Neil CR; Mowry K
    Cold Spring Harb Protoc; 2018 May; 2018(5):pdb.prot097030. PubMed ID: 29437997
    [No Abstract]   [Full Text] [Related]  

  • 6. Natural size variation among embryos leads to the corresponding scaling in gene expression.
    Leibovich A; Edri T; Klein SL; Moody SA; Fainsod A
    Dev Biol; 2020 Jun; 462(2):165-179. PubMed ID: 32259520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging Methods in
    Davidson LA; Lowery LA
    Cold Spring Harb Protoc; 2022 Jun; 2022(5):Pdb.top105627. PubMed ID: 34244350
    [No Abstract]   [Full Text] [Related]  

  • 8. Cdc42 Effector Protein 2 (XCEP2) is required for normal gastrulation and contributes to cellular adhesion in Xenopus laevis.
    Nelson KK; Nelson RW
    BMC Dev Biol; 2004 Oct; 4():13. PubMed ID: 15473906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-magnification in vivo imaging of Xenopus embryos for cell and developmental biology.
    Kieserman EK; Lee C; Gray RS; Park TJ; Wallingford JB
    Cold Spring Harb Protoc; 2010 May; 2010(5):pdb.prot5427. PubMed ID: 20439414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental Expression of Ectonucleotidase and Purinergic Receptors Detection by Whole-Mount In Situ Hybridization in Xenopus Embryos.
    Blanchard C; Massé K
    Methods Mol Biol; 2020; 2041():87-106. PubMed ID: 31646482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryosectioning.
    Ross MA; Kohut L; Loughran PA
    Curr Protoc; 2022 Jan; 2(1):e342. PubMed ID: 35038380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The establishment of polarized membrane traffic in Xenopus laevis embryos.
    Roberts SJ; Leaf DS; Moore HP; Gerhart JC
    J Cell Biol; 1992 Sep; 118(6):1359-69. PubMed ID: 1355772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The embryonic development of Xenopus laevis under a low frequency electric field.
    Boga A; Binokay S; Emre M; Sertdemir Y
    In Vitro Cell Dev Biol Anim; 2012 Jun; 48(6):385-91. PubMed ID: 22723004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MALDI-imaging of early stage Xenopus laevis embryos.
    Wang M; Dubiak K; Zhang Z; Huber PW; Chen DDY; Dovichi NJ
    Talanta; 2019 Nov; 204():138-144. PubMed ID: 31357275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of high-molecular-weight polyvinyl chloride on Xenopus laevis adults and embryos: the mRNA expression profiles of Myf5, Esr1, Bmp4, Pax6, and Hsp70 genes during early embryonic development.
    Pekmezekmek AB; Emre M; Erdogan S; Yilmaz B; Tunc E; Sertdemir Y; Emre Y
    Environ Sci Pollut Res Int; 2022 Feb; 29(10):14767-14779. PubMed ID: 34617235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification, characterization, and effects of Xenopus laevis PNAS-4 gene on embryonic development.
    Yan F; Ruan XZ; Yang HS; Yao SH; Zhao XY; Gou LT; Ma FX; Yuan Z; Deng HX; Wei YQ
    J Biomed Biotechnol; 2010; 2010():134764. PubMed ID: 20454583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetic Control of the Canonical Wnt Signaling Pathway During Xenopus laevis Embryonic Development.
    Krishnamurthy VV; Hwang H; Fu J; Yang J; Zhang K
    J Mol Biol; 2021 Sep; 433(18):167050. PubMed ID: 34019868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing Xenopus embryos recover by compacting and expelling single wall carbon nanotubes.
    Holt BD; Shawky JH; Dahl KN; Davidson LA; Islam MF
    J Appl Toxicol; 2016 Apr; 36(4):579-85. PubMed ID: 26153061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on Xenopus laevis intestine reveal biological pathways underlying vertebrate gut adaptation from embryo to adult.
    Heimeier RA; Das B; Buchholz DR; Fiorentino M; Shi YB
    Genome Biol; 2010; 11(5):R55. PubMed ID: 20482879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leukemia inhibitory factor signaling in Xenopus embryo: Insights from gain of function analysis and dominant negative mutant of the receptor.
    Jalvy S; Veschambre P; Fédou S; Rezvani HR; Thézé N; Thiébaud P
    Dev Biol; 2019 Mar; 447(2):200-213. PubMed ID: 30578761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.