These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34244350)

  • 81. Dynamics of the control of body pattern in the development of Xenopus laevis. I. Timing and pattern in the development of dorsoanterior and posterior blastomere pairs, isolated at the 4-cell stage.
    Cooke J; Webber JA
    J Embryol Exp Morphol; 1985 Aug; 88():85-112. PubMed ID: 4078542
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Obtaining
    Lane M; Khokha MK
    Cold Spring Harb Protoc; 2022 Apr; 2022(4):Pdb.prot106609. PubMed ID: 34031213
    [No Abstract]   [Full Text] [Related]  

  • 83. Adaptive correction of craniofacial defects in pre-metamorphic
    Pinet K; Deolankar M; Leung B; McLaughlin KA
    Development; 2019 Jul; 146(14):. PubMed ID: 31253636
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Xenopus glucose transporter 1 (xGLUT1) is required for gastrulation movement in Xenopus laevis.
    Suzawa K; Yukita A; Hayata T; Goto T; Danno H; Michiue T; Cho KW; Asashima M
    Int J Dev Biol; 2007; 51(3):183-90. PubMed ID: 17486538
    [TBL] [Abstract][Full Text] [Related]  

  • 85. An in vivo chemical library screen in Xenopus tadpoles reveals novel pathways involved in angiogenesis and lymphangiogenesis.
    Kälin RE; Bänziger-Tobler NE; Detmar M; Brändli AW
    Blood; 2009 Jul; 114(5):1110-22. PubMed ID: 19478043
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Studying regeneration in Xenopus.
    Beck CW
    Methods Mol Biol; 2012; 917():525-39. PubMed ID: 22956108
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Altering the levels of nuclear import factors in early Xenopus laevis embryos affects later development.
    Jevtić P; Mukherjee RN; Chen P; Levy DL
    PLoS One; 2019; 14(4):e0215740. PubMed ID: 31009515
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Endoderm specification and differentiation in Xenopus embryos.
    Horb ME; Slack JM
    Dev Biol; 2001 Aug; 236(2):330-43. PubMed ID: 11476575
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Analysis of Cell Fate Commitment in
    Moody SA
    Cold Spring Harb Protoc; 2019 Jan; 2019(1):. PubMed ID: 29769394
    [TBL] [Abstract][Full Text] [Related]  

  • 90. An examination of non-formalin-based fixation methods for Xenopus embryos.
    Acton A; Harvey T; Grow MW
    Dev Dyn; 2005 Aug; 233(4):1464-9. PubMed ID: 15965982
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Regional requirements for Dishevelled signaling during Xenopus gastrulation: separable effects on blastopore closure, mesendoderm internalization and archenteron formation.
    Ewald AJ; Peyrot SM; Tyszka JM; Fraser SE; Wallingford JB
    Development; 2004 Dec; 131(24):6195-209. PubMed ID: 15548584
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Effects of estrogenic hormones on early development of Xenopus laevis.
    Nishimura N; Fukazawa Y; Uchiyama H; Iguchi T
    J Exp Zool; 1997 Jul; 278(4):221-33. PubMed ID: 9206031
    [TBL] [Abstract][Full Text] [Related]  

  • 93. COUP-TFI is a potential regulator of retinoic acid-modulated development in Xenopus embryos.
    Schuh TJ; Kimelman D
    Mech Dev; 1995 May; 51(1):39-49. PubMed ID: 7669692
    [TBL] [Abstract][Full Text] [Related]  

  • 94. A versatile protocol for mRNA electroporation of Xenopus laevis embryos.
    Chernet BT; Levin M
    Cold Spring Harb Protoc; 2012 Apr; 2012(4):447-52. PubMed ID: 22474651
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Developmental toxicity of dibutyl phthalate and citrate ester plasticizers in Xenopus laevis embryos.
    Xu Y; Gye MC
    Chemosphere; 2018 Aug; 204():523-534. PubMed ID: 29684872
    [TBL] [Abstract][Full Text] [Related]  

  • 96. A bromodeoxyuridine (BrdU) based protocol for characterizing proliferating progenitors in Xenopus embryos.
    Auger H; Thuret R; El Yakoubi W; Papalopulu N
    Methods Mol Biol; 2012; 917():461-75. PubMed ID: 22956104
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Altered development of Xenopus embryos in a hypogeomagnetic field.
    Mo WC; Liu Y; Cooper HM; He RQ
    Bioelectromagnetics; 2012 Apr; 33(3):238-46. PubMed ID: 21853450
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Electron microscopy of the amphibian model systems Xenopus laevis and Ambystoma mexicanum.
    Kurth T; Berger J; Wilsch-Bräuninger M; Kretschmar S; Cerny R; Schwarz H; Löfberg J; Piendl T; Epperlein HH
    Methods Cell Biol; 2010; 96():395-423. PubMed ID: 20869532
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Identification, characterization, and effects of Xenopus laevis PNAS-4 gene on embryonic development.
    Yan F; Ruan XZ; Yang HS; Yao SH; Zhao XY; Gou LT; Ma FX; Yuan Z; Deng HX; Wei YQ
    J Biomed Biotechnol; 2010; 2010():134764. PubMed ID: 20454583
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Distribution of type II collagen mRNA in Xenopus embryos visualized by whole-mount in situ hybridization.
    Bieker JJ; Yazdani-Buicky M
    J Histochem Cytochem; 1992 Aug; 40(8):1117-20. PubMed ID: 1619277
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.