These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 34244503)

  • 41. Enhanced Electrochemical H
    Xu Z; Liang J; Wang Y; Dong K; Shi X; Liu Q; Luo Y; Li T; Jia Y; Asiri AM; Feng Z; Wang Y; Ma D; Sun X
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33182-33187. PubMed ID: 34251177
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhancement of hydrogen peroxide production by electrochemical reduction of oxygen on carbon nanotubes modified with fluorine.
    Wang W; Lu X; Su P; Li Y; Cai J; Zhang Q; Zhou M; Arotiba O
    Chemosphere; 2020 Nov; 259():127423. PubMed ID: 32574847
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Direct insights into the role of epoxy groups on cobalt sites for acidic H
    Zhang Q; Tan X; Bedford NM; Han Z; Thomsen L; Smith S; Amal R; Lu X
    Nat Commun; 2020 Aug; 11(1):4181. PubMed ID: 32826877
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrocatalytic two-electron oxygen reduction over nitrogen doped hollow carbon nanospheres.
    Xu Z; Ma Z; Dong K; Liang J; Zhang L; Luo Y; Liu Q; You J; Feng Z; Ma D; Wang Y; Sun X
    Chem Commun (Camb); 2022 Apr; 58(32):5025-5028. PubMed ID: 35373790
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Heteroatom-doped carbon-based oxygen reduction electrocatalysts with tailored four-electron and two-electron selectivity.
    Woo J; Lim JS; Kim JH; Joo SH
    Chem Commun (Camb); 2021 Jul; 57(60):7350-7361. PubMed ID: 34231572
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recent advances in carbonaceous catalyst design for the in situ production of H
    Ali I; Van Eyck K; De Laet S; Dewil R
    Chemosphere; 2022 Dec; 308(Pt 1):136127. PubMed ID: 36028123
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bifunctional single-atomic Mn sites for energy-efficient hydrogen production.
    Peng X; Hou J; Mi Y; Sun J; Qi G; Qin Y; Zhang S; Qiu Y; Luo J; Liu X
    Nanoscale; 2021 Mar; 13(9):4767-4773. PubMed ID: 33650623
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon.
    Liu Y; Quan X; Fan X; Wang H; Chen S
    Angew Chem Int Ed Engl; 2015 Jun; 54(23):6837-41. PubMed ID: 25892325
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced H
    Thostenson JO; Ngaboyamahina E; Sellgren KL; Hawkins BT; Piascik JR; Klem EJD; Parker CB; Deshusses MA; Stoner BR; Glass JT
    ACS Appl Mater Interfaces; 2017 May; 9(19):16610-16619. PubMed ID: 28471651
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pd-Sn Alloy Catalysts for Direct Synthesis of Hydrogen Peroxide from H
    Yang Z; Hao Z; Zhou S; Xie P; Wei Z; Zhao S; Gong F
    ACS Appl Mater Interfaces; 2023 May; 15(19):23058-23067. PubMed ID: 37133527
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Selective Copper Based Oxygen Reduction Catalyst for the Electrochemical Synthesis of H
    van Dijk B; Kinders R; Ferber TH; Hofmann JP; Hetterscheid DGH
    ChemElectroChem; 2022 Feb; 9(3):e202101692. PubMed ID: 35911791
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Single-Atom Co-N
    Wu F; Pan C; He CT; Han Y; Ma W; Wei H; Ji W; Chen W; Mao J; Yu P; Wang D; Mao L; Li Y
    J Am Chem Soc; 2020 Sep; 142(39):16861-16867. PubMed ID: 32924470
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Origin of Selective Production of Hydrogen Peroxide by Electrochemical Oxygen Reduction.
    Zhao X; Liu Y
    J Am Chem Soc; 2021 Jun; ():. PubMed ID: 34133170
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Boron-nitrogen-doped carbon dots on multi-walled carbon nanotubes for efficient electrocatalysis of oxygen reduction reactions.
    Pei Y; Song H; Liu Y; Cheng Y; Li W; Chen Y; Fan Y; Liu B; Lu S
    J Colloid Interface Sci; 2021 Oct; 600():865-871. PubMed ID: 34052535
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-performance single-atom Ni catalyst loaded graphyne for H
    Zhang W; Gao YJ; Fang QJ; Pan JK; Zhu XC; Deng SW; Yao ZH; Zhuang GL; Wang JG
    J Colloid Interface Sci; 2021 Oct; 599():58-67. PubMed ID: 33933797
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sulfur dopant-enhanced neutral hydrogen evolution performance in MoO
    Wang L; Qi G; Liu X
    Nanotechnology; 2021 Nov; 33(6):. PubMed ID: 34706360
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Flow-Through Electrochemical Membrane Reactor with a Self-Supported Carbon Membrane Electrode for Highly Efficient Synthesis of Hydrogen Peroxide.
    Chen Z; Wang H; Ma X; Chen X; Gui S; Li J
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):42460-42469. PubMed ID: 37647533
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Carbon-based materials for photo- and electrocatalytic synthesis of hydrogen peroxide.
    Hu X; Zeng X; Liu Y; Lu J; Zhang X
    Nanoscale; 2020 Aug; 12(30):16008-16027. PubMed ID: 32720961
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Serendipity in Catalysis Research: Boron-Based Materials for Alkane Oxidative Dehydrogenation.
    Venegas JM; McDermott WP; Hermans I
    Acc Chem Res; 2018 Oct; 51(10):2556-2564. PubMed ID: 30285416
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-yield electrochemical hydrogen peroxide production from an enhanced two-electron oxygen reduction pathway by mesoporous nitrogen-doped carbon and manganese hybrid electrocatalysts.
    Byeon A; Cho J; Kim JM; Chae KH; Park HY; Hong SW; Ham HC; Lee SW; Yoon KR; Kim JY
    Nanoscale Horiz; 2020 May; 5(5):832-838. PubMed ID: 32364213
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.