These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. A subduction influence on ocean ridge basalts outside the Pacific subduction shield. Yang AY; Langmuir CH; Cai Y; Michael P; Goldstein SL; Chen Z Nat Commun; 2021 Aug; 12(1):4757. PubMed ID: 34362917 [TBL] [Abstract][Full Text] [Related]
7. Global correlation of lower mantle structure and past subduction. Domeier M; Doubrovine PV; Torsvik TH; Spakman W; Bull AL Geophys Res Lett; 2016 May; 43(10):4945-4953. PubMed ID: 31413424 [TBL] [Abstract][Full Text] [Related]
8. Southwest Pacific Absolute Plate Kinematic Reconstruction Reveals Major Cenozoic Tonga-Kermadec Slab Dragging. van de Lagemaat SHA; van Hinsbergen DJJ; Boschman LM; Kamp PJJ; Spakman W Tectonics; 2018 Aug; 37(8):2647-2674. PubMed ID: 30344365 [TBL] [Abstract][Full Text] [Related]
9. Contrasting crustal production and rapid mantle transitions beneath back-arc ridges. Dunn RA; Martinez F Nature; 2011 Jan; 469(7329):198-202. PubMed ID: 21228874 [TBL] [Abstract][Full Text] [Related]
10. Water input into the Mariana subduction zone estimated from ocean-bottom seismic data. Cai C; Wiens DA; Shen W; Eimer M Nature; 2018 Nov; 563(7731):389-392. PubMed ID: 30429549 [TBL] [Abstract][Full Text] [Related]
12. Surface and mantle records reveal an ancient slab tear beneath Gondwana. Gianni GM; Navarrete C; Spagnotto S Sci Rep; 2019 Dec; 9(1):19774. PubMed ID: 31875052 [TBL] [Abstract][Full Text] [Related]
13. Louisville seamount subduction and its implication on mantle flow beneath the central Tonga-Kermadec arc. Timm C; Bassett D; Graham IJ; Leybourne MI; de Ronde CE; Woodhead J; Layton-Matthews D; Watts AB Nat Commun; 2013; 4():1720. PubMed ID: 23591887 [TBL] [Abstract][Full Text] [Related]
14. Nitrogen recycling at the Costa Rican subduction zone: The role of incoming plate structure. Lee H; Fischer TP; de Moor JM; Sharp ZD; Takahata N; Sano Y Sci Rep; 2017 Oct; 7(1):13933. PubMed ID: 29066787 [TBL] [Abstract][Full Text] [Related]
15. Mantle-circulation models with sequential data assimilation: inferring present-day mantle structure from plate-motion histories. Bunge HP; Richards MA; Baumgardner JR Philos Trans A Math Phys Eng Sci; 2002 Nov; 360(1800):2545-67. PubMed ID: 12460480 [TBL] [Abstract][Full Text] [Related]
17. Mariana serpentinite mud volcanism exhumes subducted seamount materials: implications for the origin of life. Fryer P; Wheat CG; Williams T; Kelley C; Johnson K; Ryan J; Kurz W; Shervais J; Albers E; Bekins B; Debret B; Deng J; Dong Y; Eickenbusch P; Frery E; Ichiyama Y; Johnston R; Kevorkian R; Magalhaes V; Mantovanelli S; Menapace W; Menzies C; Michibayashi K; Moyer C; Mullane K; Park JW; Price R; Sissmann O; Suzuki S; Takai K; Walter B; Zhang R; Amon D; Glickson D; Pomponi S Philos Trans A Math Phys Eng Sci; 2020 Feb; 378(2165):20180425. PubMed ID: 31902339 [TBL] [Abstract][Full Text] [Related]
18. Mesozoic plate-motion history below the northeast Pacific Ocean from seismic images of the subducted Farallon slab. Bunge HP; Grand SP Nature; 2000 May; 405(6784):337-40. PubMed ID: 10830960 [TBL] [Abstract][Full Text] [Related]
19. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction. Zhao ZF; Dai LQ; Zheng YF Sci Rep; 2013 Dec; 3():3413. PubMed ID: 24301173 [TBL] [Abstract][Full Text] [Related]
20. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle. Kerrick DM; Connolly JA Nature; 2001 May; 411(6835):293-6. PubMed ID: 11357128 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]