These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34244517)

  • 1. Observation of laser-assisted electron scattering in superfluid helium.
    Treiber L; Thaler B; Heim P; Stadlhofer M; Kanya R; Kitzler-Zeiler M; Koch M
    Nat Commun; 2021 Jul; 12(1):4204. PubMed ID: 34244517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of Above-Threshold Ionization and Laser-Assisted Electron Scattering inside Helium Nanodroplets.
    Treiber L; Kanya R; Kitzler-Zeiler M; Koch M
    J Phys Chem A; 2022 Nov; 126(45):8380-8387. PubMed ID: 36384271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of laser-assisted electron-atom scattering in femtosecond intense laser fields.
    Kanya R; Morimoto Y; Yamanouchi K
    Phys Rev Lett; 2010 Sep; 105(12):123202. PubMed ID: 20867636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apparatus for laser-assisted electron scattering in femtosecond intense laser fields.
    Kanya R; Morimoto Y; Yamanouchi K
    Rev Sci Instrum; 2011 Dec; 82(12):123105. PubMed ID: 22225197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron energy loss and angular asymmetry induced by elastic scattering in superfluid helium nanodroplets.
    Asmussen JD; Sishodia K; Bastian B; Abid AR; Ben Ltaief L; Pedersen HB; De S; Medina C; Pal N; Richter R; Fennel T; Krishnan S; Mudrich M
    Nanoscale; 2023 Sep; 15(34):14025-14031. PubMed ID: 37559557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-Dressing Effect in Laser-Assisted Elastic Electron Scattering by Xe.
    Morimoto Y; Kanya R; Yamanouchi K
    Phys Rev Lett; 2015 Sep; 115(12):123201. PubMed ID: 26430993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution laser resonances of antiprotonic helium in superfluid
    Sótér A; Aghai-Khozani H; Barna D; Dax A; Venturelli L; Hori M
    Nature; 2022 Mar; 603(7901):411-415. PubMed ID: 35296843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of vortex assisted metal condensation in superfluid helium.
    Popov E; Mammetkuliyev M; Eloranta J
    J Chem Phys; 2013 May; 138(20):204307. PubMed ID: 23742475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual scattering foil design for poly-energetic electron beams.
    Kainz KK; Antolak JA; Almond PR; Bloch CD; Hogstrom KR
    Phys Med Biol; 2005 Mar; 50(5):755-67. PubMed ID: 15798252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of a Monte Carlo model for multi leaf collimator based electron delivery.
    Kaluarachchi MM; Saleh ZH; Schwer ML; Klein EE
    Med Phys; 2020 Aug; 47(8):3586-3599. PubMed ID: 32324289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase-of-the-Phase Electron Momentum Spectroscopy on Single Metal Atoms in Helium Nanodroplets.
    Krebs BS; Tulsky V; Kazak L; Zabel M; Bauer D; Tiggesbäumker J
    J Phys Chem Lett; 2022 Feb; 13(6):1526-1532. PubMed ID: 35133167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photon beams for radiosurgery produced by laser Compton backscattering from relativistic electrons.
    Girolami B; Larsson B; Preger M; Schaerf C; Stepanek J
    Phys Med Biol; 1996 Sep; 41(9):1581-96. PubMed ID: 8884899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SU-E-T-489: Quantum versus Classical Trajectory Monte Carlo Simulations of Low Energy Electron Transport.
    Thomson R; Kawrakow I
    Med Phys; 2012 Jun; 39(6Part17):3817-3818. PubMed ID: 28517446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Electron and Ion Emission from Xenon Cluster-Induced Ignition of Helium Nanodroplets.
    Kelbg M; Heidenreich A; Kazak L; Zabel M; Krebs B; Meiwes-Broer KH; Tiggesbäumker J
    J Phys Chem A; 2018 Oct; 122(41):8107-8113. PubMed ID: 30239204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of elastic and inelastic scattering in giving electrons tortuous paths in matter.
    Turner JE; Hamm RN
    Health Phys; 1995 Sep; 69(3):378-84. PubMed ID: 7635734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross sections for low-energy (1-100 eV) electron elastic and inelastic scattering in amorphous ice.
    Michaud M; Wen A; Sanche L
    Radiat Res; 2003 Jan; 159(1):3-22. PubMed ID: 12492364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo simulation of the energy loss of low-energy electrons in liquid water.
    Emfietzoglou D; Karava K; Papamichael G; Moscovitch M
    Phys Med Biol; 2003 Aug; 48(15):2355-71. PubMed ID: 12953903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced single-stage laser-driven electron acceleration by self-controlled ionization injection.
    Li S; Hafz NA; Mirzaie M; Sokollik T; Zeng M; Chen M; Sheng Z; Zhang J
    Opt Express; 2014 Dec; 22(24):29578-86. PubMed ID: 25606890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source.
    Rupp D; Monserud N; Langbehn B; Sauppe M; Zimmermann J; Ovcharenko Y; Möller T; Frassetto F; Poletto L; Trabattoni A; Calegari F; Nisoli M; Sander K; Peltz C; J Vrakking M; Fennel T; Rouzée A
    Nat Commun; 2017 Sep; 8(1):493. PubMed ID: 28887513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative Approach for the Determination of Mean Free Paths of Electron Scattering in Liquid Water Based on Experimental Data.
    Schild A; Peper M; Perry C; Rattenbacher D; Wörner HJ
    J Phys Chem Lett; 2020 Feb; 11(3):1128-1134. PubMed ID: 31928019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.