These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
330 related articles for article (PubMed ID: 34244796)
1. ANANSE: an enhancer network-based computational approach for predicting key transcription factors in cell fate determination. Xu Q; Georgiou G; Frölich S; van der Sande M; Veenstra GJC; Zhou H; van Heeringen SJ Nucleic Acids Res; 2021 Aug; 49(14):7966-7985. PubMed ID: 34244796 [TBL] [Abstract][Full Text] [Related]
2. Identification of transcription factors dictating blood cell development using a bidirectional transcription network-based computational framework. Heuts BMH; Arza-Apalategi S; Frölich S; Bergevoet SM; van den Oever SN; van Heeringen SJ; van der Reijden BA; Martens JHA Sci Rep; 2022 Nov; 12(1):18656. PubMed ID: 36333382 [TBL] [Abstract][Full Text] [Related]
3. Enhancer-driven gene regulatory networks inference from single-cell RNA-seq and ATAC-seq data. Li Y; Ma A; Wang Y; Guo Q; Wang C; Fu H; Liu B; Ma Q Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39082647 [TBL] [Abstract][Full Text] [Related]
4. Identification of activated enhancers and linked transcription factors in breast, prostate, and kidney tumors by tracing enhancer networks using epigenetic traits. Rhie SK; Guo Y; Tak YG; Yao L; Shen H; Coetzee GA; Laird PW; Farnham PJ Epigenetics Chromatin; 2016; 9():50. PubMed ID: 27833659 [TBL] [Abstract][Full Text] [Related]
5. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions. Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187 [TBL] [Abstract][Full Text] [Related]
6. Enhancer Predictions and Genome-Wide Regulatory Circuits. Beer MA; Shigaki D; Huangfu D Annu Rev Genomics Hum Genet; 2020 Aug; 21():37-54. PubMed ID: 32443951 [TBL] [Abstract][Full Text] [Related]
7. Cell fate conversion prediction by group sparse optimization method utilizing single-cell and bulk OMICs data. Qin J; Hu Y; Yao JC; Leung RWT; Zhou Y; Qin Y; Wang J Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34374760 [TBL] [Abstract][Full Text] [Related]
8. CD8 He B; Xing S; Chen C; Gao P; Teng L; Shan Q; Gullicksrud JA; Martin MD; Yu S; Harty JT; Badovinac VP; Tan K; Xue HH Immunity; 2016 Dec; 45(6):1341-1354. PubMed ID: 27986453 [TBL] [Abstract][Full Text] [Related]
9. GRaNIE and GRaNPA: inference and evaluation of enhancer-mediated gene regulatory networks. Kamal A; Arnold C; Claringbould A; Moussa R; Servaas NH; Kholmatov M; Daga N; Nogina D; Mueller-Dott S; Reyes-Palomares A; Palla G; Sigalova O; Bunina D; Pabst C; Zaugg JB Mol Syst Biol; 2023 Jun; 19(6):e11627. PubMed ID: 37073532 [TBL] [Abstract][Full Text] [Related]
10. scGRNom: a computational pipeline of integrative multi-omics analyses for predicting cell-type disease genes and regulatory networks. Jin T; Rehani P; Ying M; Huang J; Liu S; Roussos P; Wang D Genome Med; 2021 May; 13(1):95. PubMed ID: 34044854 [TBL] [Abstract][Full Text] [Related]
11. Computational identification of active enhancers in model organisms. Wang C; Zhang MQ; Zhang Z Genomics Proteomics Bioinformatics; 2013 Jun; 11(3):142-50. PubMed ID: 23685394 [TBL] [Abstract][Full Text] [Related]
12. RFECS: a random-forest based algorithm for enhancer identification from chromatin state. Rajagopal N; Xie W; Li Y; Wagner U; Wang W; Stamatoyannopoulos J; Ernst J; Kellis M; Ren B PLoS Comput Biol; 2013; 9(3):e1002968. PubMed ID: 23526891 [TBL] [Abstract][Full Text] [Related]
13. Dynamic network-guided CRISPRi screen identifies CTCF-loop-constrained nonlinear enhancer gene regulatory activity during cell state transitions. Luo R; Yan J; Oh JW; Xi W; Shigaki D; Wong W; Cho HS; Murphy D; Cutler R; Rosen BP; Pulecio J; Yang D; Glenn RA; Chen T; Li QV; Vierbuchen T; Sidoli S; Apostolou E; Huangfu D; Beer MA Nat Genet; 2023 Aug; 55(8):1336-1346. PubMed ID: 37488417 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide map of regulatory interactions in the human genome. Heidari N; Phanstiel DH; He C; Grubert F; Jahanbani F; Kasowski M; Zhang MQ; Snyder MP Genome Res; 2014 Dec; 24(12):1905-17. PubMed ID: 25228660 [TBL] [Abstract][Full Text] [Related]
15. Network Analysis of Enhancer-Promoter Interactions Highlights Cell-Type-Specific Mechanisms of Transcriptional Regulation Variation. Koesterich J; Liu J; Williams SE; Yang N; Kreimer A Int J Mol Sci; 2024 Sep; 25(18):. PubMed ID: 39337329 [TBL] [Abstract][Full Text] [Related]
16. Homotypic clusters of transcription factor binding sites are a key component of human promoters and enhancers. Gotea V; Visel A; Westlund JM; Nobrega MA; Pennacchio LA; Ovcharenko I Genome Res; 2010 May; 20(5):565-77. PubMed ID: 20363979 [TBL] [Abstract][Full Text] [Related]
18. Systematic analysis of enhancer regulatory circuit perturbation driven by copy number variations in malignant glioma. Xiao J; Jin X; Zhang C; Zou H; Chang Z; Han N; Li X; Zhang Y; Li Y Theranostics; 2021; 11(7):3060-3073. PubMed ID: 33537074 [No Abstract] [Full Text] [Related]
19. Identification of genomic enhancers through spatial integration of single-cell transcriptomics and epigenomics. Bravo González-Blas C; Quan XJ; Duran-Romaña R; Taskiran II; Koldere D; Davie K; Christiaens V; Makhzami S; Hulselmans G; de Waegeneer M; Mauduit D; Poovathingal S; Aibar S; Aerts S Mol Syst Biol; 2020 May; 16(5):e9438. PubMed ID: 32431014 [TBL] [Abstract][Full Text] [Related]