These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34245007)

  • 1. A predictive model for fracture in human ribs based on in vitro acoustic emission data.
    García-Vilana S; Sánchez-Molina D; Llumà J; Fernández-Osete I; Veláquez-Ameijide J; Martínez-González E
    Med Phys; 2021 Sep; 48(9):5540-5548. PubMed ID: 34245007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic emission applied to stochastic modeling of microdamage in compact bone.
    Sánchez-Molina D; García-Vilana S
    Biomech Model Mechanobiol; 2024 Aug; 23(4):1277-1287. PubMed ID: 38553591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic properties of fracture of dental restorative materials and endocrown restorations under quasi-static loading.
    Skalskyi V; Makeev V; Stankevych O; Dubytskyi O
    Dent Mater; 2020 May; 36(5):617-625. PubMed ID: 32299664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel ex vivo model of compressive immature rib fractures at pathophysiological rates of loading.
    Beadle N; Burnett TL; Hoyland JA; Sherratt MJ; Freemont AJ
    J Mech Behav Biomed Mater; 2015 Nov; 51():154-62. PubMed ID: 26253206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detailed subject-specific FE rib modeling for fracture prediction.
    Iraeus J; Lundin L; Storm S; Agnew A; Kang YS; Kemper A; Albert D; Holcombe S; Pipkorn B
    Traffic Inj Prev; 2019; 20(sup2):S88-S95. PubMed ID: 31589083
    [No Abstract]   [Full Text] [Related]  

  • 6. Examination of ceramic/enamel interfacial debonding using acoustic emission and optical coherence tomography.
    Lin CL; Kuo WC; Chang YH; Yu JJ; Lin YC
    Dent Mater; 2014 Aug; 30(8):910-6. PubMed ID: 24958691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic emission characteristics and fracture mechanism of cemented tailings backfill under uniaxial compression: experimental and numerical study.
    Cheng A; Zhou Y; Chen G; Huang S; Ye Z
    Environ Sci Pollut Res Int; 2023 Apr; 30(19):55143-55157. PubMed ID: 36890404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Fatigue Crack Growth Based on Acoustic Emission Multi-Parameter Analysis.
    Chai M; Lai C; Xu W; Duan Q; Zhang Z; Song Y
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic emission based monitoring of the microdamage evolution during fatigue of human cortical bone.
    Agcaoglu S; Akkus O
    J Biomech Eng; 2013 Aug; 135(8):81005. PubMed ID: 23760184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rate effect on mechanical properties of hydraulic concrete flexural-tensile specimens under low loading rates using acoustic emission technique.
    Su H; Hu J; Tong J; Wen Z
    Ultrasonics; 2012 Sep; 52(7):890-904. PubMed ID: 22534061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural analysis of human rib fracture and implications for forensic interpretation.
    Daegling DJ; Warren MW; Hotzman JL; Self CJ
    J Forensic Sci; 2008 Nov; 53(6):1301-7. PubMed ID: 18798775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical and Trabecular Bone Fracture Characterisation in the Vertebral Body Using Acoustic Emission.
    Robinson DL; Tse KM; Franklyn M; Zhang J; Ackland D; Lee PVS
    Ann Biomed Eng; 2019 Dec; 47(12):2384-2401. PubMed ID: 31342335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison between rib fracture patterns in peri- and post-mortem compressive injury in a piglet model.
    Bradley AL; Swain MV; Neil Waddell J; Das R; Athens J; Kieser JA
    J Mech Behav Biomed Mater; 2014 May; 33():67-75. PubMed ID: 23867291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rib fractures under anterior-posterior dynamic loads: experimental and finite-element study.
    Li Z; Kindig MW; Kerrigan JR; Untaroiu CD; Subit D; Crandall JR; Kent RW
    J Biomech; 2010 Jan; 43(2):228-34. PubMed ID: 19875122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Examination of ceramic restoration adhesive coverage in cusp-replacement premolar using acoustic emission under fatigue testing.
    Chang YH; Yu JJ; Lin CL
    Biomed Eng Online; 2014 Dec; 13():165. PubMed ID: 25495010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compressive rib fracture: peri-mortem and post-mortem trauma patterns in a pig model.
    Kieser JA; Weller S; Swain MV; Neil Waddell J; Das R
    Leg Med (Tokyo); 2013 Jul; 15(4):193-201. PubMed ID: 23453778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of mechanical properties of healing fractures using acoustic emission.
    Watanabe Y; Takai S; Arai Y; Yoshino N; Hirasawa Y
    J Orthop Res; 2001 Jul; 19(4):548-53. PubMed ID: 11518260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On dynamic behavior of bone: Experimental and numerical study of porcine ribs subjected to impact loads in dynamic three-point bending tests.
    Ayagara AR; Langlet A; Hambli R
    J Mech Behav Biomed Mater; 2019 Oct; 98():336-347. PubMed ID: 31302583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Use of the Acoustic Emission Method to Identify Crack Growth in 40CrMo Steel.
    Krampikowska A; Pała R; Dzioba I; Świt G
    Materials (Basel); 2019 Jul; 12(13):. PubMed ID: 31277224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Failed rib region prediction in a human body model during crash events with precrash braking.
    Guleyupoglu B; Koya B; Barnard R; Gayzik FS
    Traffic Inj Prev; 2018 Feb; 19(sup1):S37-S43. PubMed ID: 29584477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.