BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34245246)

  • 1. Differential network analysis by simultaneously considering changes in gene interactions and gene expression.
    Tu JJ; Ou-Yang L; Zhu Y; Yan H; Qin H; Zhang XF
    Bioinformatics; 2021 Dec; 37(23):4414-4423. PubMed ID: 34245246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating prior information into differential network analysis using non-paranormal graphical models.
    Zhang XF; Ou-Yang L; Yan H
    Bioinformatics; 2017 Aug; 33(16):2436-2445. PubMed ID: 28407042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joint reconstruction of multiple gene networks by simultaneously capturing inter-tumor and intra-tumor heterogeneity.
    Tu JJ; Ou-Yang L; Yan H; Zhang XF; Qin H
    Bioinformatics; 2020 May; 36(9):2755-2762. PubMed ID: 31971577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying Gene Network Rewiring Based on Partial Correlation.
    Tan YT; Ou-Yang L; Jiang X; Yan H; Zhang XF
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):513-521. PubMed ID: 32750866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance-Penalized Joint Graphical Lasso (IPJGL): differential network inference via GGMs.
    Leng J; Wu LY
    Bioinformatics; 2022 Jan; 38(3):770-777. PubMed ID: 34718410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DiffNetFDR: differential network analysis with false discovery rate control.
    Zhang XF; Ou-Yang L; Yang S; Hu X; Yan H
    Bioinformatics; 2019 Sep; 35(17):3184-3186. PubMed ID: 30689728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DiffGraph: an R package for identifying gene network rewiring using differential graphical models.
    Zhang XF; Ou-Yang L; Yang S; Hu X; Yan H
    Bioinformatics; 2018 May; 34(9):1571-1573. PubMed ID: 29309511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. JDINAC: joint density-based non-parametric differential interaction network analysis and classification using high-dimensional sparse omics data.
    Ji J; He D; Feng Y; He Y; Xue F; Xie L
    Bioinformatics; 2017 Oct; 33(19):3080-3087. PubMed ID: 28582486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-Varying Differential Network Analysis for Revealing Network Rewiring over Cancer Progression.
    Xu T; Ou-Yang L; Yan H; Zhang XF
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1632-1642. PubMed ID: 31647444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying Gene Network Rewiring by Integrating Gene Expression and Gene Network Data.
    Xu T; Ou-Yang L; Hu X; Zhang XF
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):2079-2085. PubMed ID: 29994068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iDINGO-integrative differential network analysis in genomics with Shiny application.
    Class CA; Ha MJ; Baladandayuthapani V; Do KA
    Bioinformatics; 2018 Apr; 34(7):1243-1245. PubMed ID: 29194470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporating prior biological knowledge for network-based differential gene expression analysis using differentially weighted graphical LASSO.
    Zuo Y; Cui Y; Yu G; Li R; Ressom HW
    BMC Bioinformatics; 2017 Feb; 18(1):99. PubMed ID: 28187708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EnGRaiN: a supervised ensemble learning method for recovery of large-scale gene regulatory networks.
    Aluru M; Shrivastava H; Chockalingam SP; Shivakumar S; Aluru S
    Bioinformatics; 2022 Feb; 38(5):1312-1319. PubMed ID: 34888624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. WDNE: an integrative graphical model for inferring differential networks from multi-platform gene expression data with missing values.
    Ou-Yang L; Cai D; Zhang XF; Yan H
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33975339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential regulation enrichment analysis via the integration of transcriptional regulatory network and gene expression data.
    Ma S; Jiang T; Jiang R
    Bioinformatics; 2015 Feb; 31(4):563-71. PubMed ID: 25322838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying biomarkers for breast cancer by gene regulatory network rewiring.
    Wang Y; Liu ZP
    BMC Bioinformatics; 2022 Jan; 22(Suppl 12):308. PubMed ID: 35045805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Node-based learning of differential networks from multi-platform gene expression data.
    Ou-Yang L; Zhang XF; Wu M; Li XL
    Methods; 2017 Oct; 129():41-49. PubMed ID: 28579401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VCNet: vector-based gene co-expression network construction and its application to RNA-seq data.
    Wang Z; Fang H; Tang NL; Deng M
    Bioinformatics; 2017 Jul; 33(14):2173-2181. PubMed ID: 28334366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying Gene Network Rewiring Using Robust Differential Graphical Model with Multivariate t-Distribution.
    Yuan R; Ou-Yang L; Hu X; Zhang XF
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):712-718. PubMed ID: 30802872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans.
    Castro JC; Valdés I; Gonzalez-García LN; Danies G; Cañas S; Winck FV; Ñústez CE; Restrepo S; Riaño-Pachón DM
    Theor Biol Med Model; 2019 Apr; 16(1):7. PubMed ID: 30961611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.