BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34245246)

  • 21. MetaDCN: meta-analysis framework for differential co-expression network detection with an application in breast cancer.
    Zhu L; Ding Y; Chen CY; Wang L; Huo Z; Kim S; Sotiriou C; Oesterreich S; Tseng GC
    Bioinformatics; 2017 Apr; 33(8):1121-1129. PubMed ID: 28031185
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NetTDP: permutation-based true discovery proportions for differential co-expression network analysis.
    Cai M; Vesely A; Chen X; Li L; Goeman JJ
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36209415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient proximal gradient algorithm for inference of differential gene networks.
    Wang C; Gao F; Giannakis GB; D'Urso G; Cai X
    BMC Bioinformatics; 2019 May; 20(1):224. PubMed ID: 31046666
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identifying Cancer Subtypes from miRNA-TF-mRNA Regulatory Networks and Expression Data.
    Xu T; Le TD; Liu L; Wang R; Sun B; Li J
    PLoS One; 2016; 11(4):e0152792. PubMed ID: 27035433
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identifying gene regulatory network rewiring using latent differential graphical models.
    Tian D; Gu Q; Ma J
    Nucleic Acids Res; 2016 Sep; 44(17):e140. PubMed ID: 27378774
    [TBL] [Abstract][Full Text] [Related]  

  • 26. KEDDY: a knowledge-based statistical gene set test method to detect differential functional protein-protein interactions.
    Jung S
    Bioinformatics; 2019 Feb; 35(4):619-627. PubMed ID: 30101275
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heterogeneous networks integration for disease-gene prioritization with node kernels.
    Tran VD; Sperduti A; Backofen R; Costa F
    Bioinformatics; 2020 May; 36(9):2649-2656. PubMed ID: 31990289
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unsupervised construction of computational graphs for gene expression data with explicit structural inductive biases.
    Scherer P; Trębacz M; Simidjievski N; Viñas R; Shams Z; Terre HA; Jamnik M; Liò P
    Bioinformatics; 2022 Feb; 38(5):1320-1327. PubMed ID: 34888618
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new method for constructing tumor specific gene co-expression networks based on samples with tumor purity heterogeneity.
    Petralia F; Wang L; Peng J; Yan A; Zhu J; Wang P
    Bioinformatics; 2018 Jul; 34(13):i528-i536. PubMed ID: 29949994
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robust identification of transcriptional regulatory networks using a Gibbs sampler on outlier sum statistic.
    Gu J; Xuan J; Riggins RB; Chen L; Wang Y; Clarke R
    Bioinformatics; 2012 Aug; 28(15):1990-7. PubMed ID: 22595208
    [TBL] [Abstract][Full Text] [Related]  

  • 31. JRmGRN: joint reconstruction of multiple gene regulatory networks with common hub genes using data from multiple tissues or conditions.
    Deng W; Zhang K; Liu S; Zhao PX; Xu S; Wei H
    Bioinformatics; 2018 Oct; 34(20):3470-3478. PubMed ID: 29718177
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel constrained genetic algorithm-based Boolean network inference method from steady-state gene expression data.
    Trinh HC; Kwon YK
    Bioinformatics; 2021 Jul; 37(Suppl_1):i383-i391. PubMed ID: 34252959
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SpaceX: gene co-expression network estimation for spatial transcriptomics.
    Acharyya S; Zhou X; Baladandayuthapani V
    Bioinformatics; 2022 Nov; 38(22):5033-5041. PubMed ID: 36179087
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Knowledge-fused differential dependency network models for detecting significant rewiring in biological networks.
    Tian Y; Zhang B; Hoffman EP; Clarke R; Zhang Z; Shih IeM; Xuan J; Herrington DM; Wang Y
    BMC Syst Biol; 2014 Jul; 8():87. PubMed ID: 25055984
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unraveling the role of low-frequency mutated genes in breast cancer.
    Lusito E; Felice B; D'Ario G; Ogier A; Montani F; Di Fiore PP; Bianchi F
    Bioinformatics; 2019 Jan; 35(1):36-46. PubMed ID: 29961866
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inference of gene regulatory networks based on nonlinear ordinary differential equations.
    Ma B; Fang M; Jiao X
    Bioinformatics; 2020 Dec; 36(19):4885-4893. PubMed ID: 31950997
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Drug repurposing against breast cancer by integrating drug-exposure expression profiles and drug-drug links based on graph neural network.
    Cui C; Ding X; Wang D; Chen L; Xiao F; Xu T; Zheng M; Luo X; Jiang H; Chen K
    Bioinformatics; 2021 Sep; 37(18):2930-2937. PubMed ID: 33739367
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RNA-Seq-Based Breast Cancer Subtypes Classification Using Machine Learning Approaches.
    Yu Z; Wang Z; Yu X; Zhang Z
    Comput Intell Neurosci; 2020; 2020():4737969. PubMed ID: 33178256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identifying Network Perturbation in Cancer.
    Grechkin M; Logsdon BA; Gentles AJ; Lee SI
    PLoS Comput Biol; 2016 May; 12(5):e1004888. PubMed ID: 27145341
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Semi-supervised network inference using simulated gene expression dynamics.
    Nguyen P; Braun R
    Bioinformatics; 2018 Apr; 34(7):1148-1156. PubMed ID: 29186340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.