These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
359 related articles for article (PubMed ID: 34245889)
1. Modeling the biomechanics of the lamina cribrosa microstructure in the human eye. Karimi A; Rahmati SM; Grytz RG; Girkin CA; Downs JC Acta Biomater; 2021 Oct; 134():357-378. PubMed ID: 34245889 [TBL] [Abstract][Full Text] [Related]
2. Relative Contributions of Intraocular and Cerebrospinal Fluid Pressures to the Biomechanics of the Lamina Cribrosa and Laminar Neural Tissues. Karimi A; Razaghi R; Rahmati SM; Girkin CA; Downs JC Invest Ophthalmol Vis Sci; 2022 Oct; 63(11):14. PubMed ID: 36255364 [TBL] [Abstract][Full Text] [Related]
3. Effects of collagen microstructure and material properties on the deformation of the neural tissues of the lamina cribrosa. Voorhees AP; Jan NJ; Sigal IA Acta Biomater; 2017 Aug; 58():278-290. PubMed ID: 28528864 [TBL] [Abstract][Full Text] [Related]
4. Correlation between local stress and strain and lamina cribrosa connective tissue volume fraction in normal monkey eyes. Roberts MD; Liang Y; Sigal IA; Grimm J; Reynaud J; Bellezza A; Burgoyne CF; Downs JC Invest Ophthalmol Vis Sci; 2010 Jan; 51(1):295-307. PubMed ID: 19696175 [TBL] [Abstract][Full Text] [Related]
5. Changes in the biomechanical response of the optic nerve head in early experimental glaucoma. Roberts MD; Sigal IA; Liang Y; Burgoyne CF; Downs JC Invest Ophthalmol Vis Sci; 2010 Nov; 51(11):5675-84. PubMed ID: 20538991 [TBL] [Abstract][Full Text] [Related]
6. Modeling individual-specific human optic nerve head biomechanics. Part I: IOP-induced deformations and influence of geometry. Sigal IA; Flanagan JG; Tertinegg I; Ethier CR Biomech Model Mechanobiol; 2009 Apr; 8(2):85-98. PubMed ID: 18309526 [TBL] [Abstract][Full Text] [Related]
7. Remodeling of the connective tissue microarchitecture of the lamina cribrosa in early experimental glaucoma. Roberts MD; Grau V; Grimm J; Reynaud J; Bellezza AJ; Burgoyne CF; Downs JC Invest Ophthalmol Vis Sci; 2009 Feb; 50(2):681-90. PubMed ID: 18806292 [TBL] [Abstract][Full Text] [Related]
8. Finite element modeling of optic nerve head biomechanics. Sigal IA; Flanagan JG; Tertinegg I; Ethier CR Invest Ophthalmol Vis Sci; 2004 Dec; 45(12):4378-87. PubMed ID: 15557446 [TBL] [Abstract][Full Text] [Related]
9. Finite element analysis of trans-lamina cribrosa pressure difference on optic nerve head biomechanics: the Beijing Intracranial and Intraocular Pressure Study. Mao Y; Yang D; Li J; Liu J; Hou R; Zhang Z; Yang Y; Tian L; Weinreb RN; Wang N Sci China Life Sci; 2020 Dec; 63(12):1887-1894. PubMed ID: 32447541 [TBL] [Abstract][Full Text] [Related]
10. Automated segmentation of the lamina cribrosa using Frangi's filter: a novel approach for rapid identification of tissue volume fraction and beam orientation in a trabeculated structure in the eye. Campbell IC; Coudrillier B; Mensah J; Abel RL; Ethier CR J R Soc Interface; 2015 Mar; 12(104):20141009. PubMed ID: 25589572 [TBL] [Abstract][Full Text] [Related]
11. Fibrous finite element modeling of the optic nerve head region. Islam MR; Ji F; Bansal M; Hua Y; Sigal IA Acta Biomater; 2024 Feb; 175():123-137. PubMed ID: 38147935 [TBL] [Abstract][Full Text] [Related]
13. Analysis of the effects of finite element type within a 3D biomechanical model of a human optic nerve head and posterior pole. Karimi A; Grytz R; Rahmati SM; Girkin CA; Downs JC Comput Methods Programs Biomed; 2021 Jan; 198():105794. PubMed ID: 33099262 [TBL] [Abstract][Full Text] [Related]
14. A porohyperelastic finite element model of the eye: the influence of stiffness and permeability on intraocular pressure and optic nerve head biomechanics. Ayyalasomayajula A; Park RI; Simon BR; Vande Geest JP Comput Methods Biomech Biomed Engin; 2016; 19(6):591-602. PubMed ID: 26195024 [TBL] [Abstract][Full Text] [Related]
15. Lamina Cribrosa Thickening in Early Glaucoma Predicted by a Microstructure Motivated Growth and Remodeling Approach. Grytz R; Sigal IA; Ruberti JW; Meschke G; Downs JC Mech Mater; 2012 Jan; 44():99-109. PubMed ID: 22389541 [TBL] [Abstract][Full Text] [Related]
16. Microstructural Deformations Within the Depth of the Lamina Cribrosa in Response to Acute In Vivo Intraocular Pressure Modulation. Glidai Y; Lucy KA; Schuman JS; Alexopoulos P; Wang B; Wu M; Liu M; Vande Geest JP; Kollech HG; Lee T; Ishikawa H; Wollstein G Invest Ophthalmol Vis Sci; 2022 May; 63(5):25. PubMed ID: 35604666 [TBL] [Abstract][Full Text] [Related]
17. IOP-induced regional displacements in the optic nerve head and correlation with peripapillary sclera thickness. Ma Y; Kwok S; Sun J; Pan X; Pavlatos E; Clayson K; Hazen N; Liu J Exp Eye Res; 2020 Nov; 200():108202. PubMed ID: 32861767 [TBL] [Abstract][Full Text] [Related]
18. Modeling individual-specific human optic nerve head biomechanics. Part II: influence of material properties. Sigal IA; Flanagan JG; Tertinegg I; Ethier CR Biomech Model Mechanobiol; 2009 Apr; 8(2):99-109. PubMed ID: 18301933 [TBL] [Abstract][Full Text] [Related]
19. Finite element modeling of the human sclera: influence on optic nerve head biomechanics and connections with glaucoma. Norman RE; Flanagan JG; Sigal IA; Rausch SM; Tertinegg I; Ethier CR Exp Eye Res; 2011 Jul; 93(1):4-12. PubMed ID: 20883693 [TBL] [Abstract][Full Text] [Related]
20. The pressure-induced deformation response of the human lamina cribrosa: Analysis of regional variations. Midgett DE; Pease ME; Jefferys JL; Patel M; Franck C; Quigley HA; Nguyen TD Acta Biomater; 2017 Apr; 53():123-139. PubMed ID: 28108378 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]